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Abstract 
 

This paper shows that imperfect output substitutability explains part of the observed persistent 
plant-level productivity dispersion.  Specifically, as substitutability in a market increases, the market’s 
productivity distribution exhibits falling dispersion and higher central tendency.  The proposed 
mechanism behind this result is truncation of the distribution from below as increased substitutability 
shifts demand to lower-cost plants and drives inefficient plants out of business.  In a case study of the 
ready-mixed concrete industry, I examine the impact of one manifestation of this effect, driven by 
geographic market segmentation resulting from transport costs.  A theoretical foundation is presented 
characterizing how differences in the density of local demand impact the number of producers and the 
ability of customers to choose between suppliers, and through this, the equilibrium productivity and 
output levels across regions.  I also introduce a new method of obtaining plant-level productivity 
estimates that is well suited to this application and avoids potential shortfalls of commonly used 
procedures.  I use these estimates to empirically test the presented theory, and the results support the 
predictions of the model.  Local demand density has a significant influence on the shape of plant-level 
productivity distributions, and accounts for part of the observed intra-industry variation in productivity, 
both between and within given market areas. 
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Market Structure and Productivity: A Concrete Example 
 

 
Recent empirical explorations have left little doubt about the magnitude of plant-level total factor 

productivity variation: it is enormous.  This heterogeneity is also persistent.  Perhaps surprisingly, much 

of the variation cannot be explained by differences between (even narrowly defined) industries.  For 

example, studies reviewed in Bartelsman and Doms (2000) have found 85th-to-15th TFP percentile 

ratios of between 2:1 and 4:1 within various four-digit SIC industries.  Productivity growth also exhibits 

huge within-industry dispersion: Haltiwanger (1997) finds that only 8.5% of productivity growth 

variation is explained by four-digit industry.  An assortment of theoretical work has arisen attempting to 

explain the sources of such diversity.  The great majority of this research focuses on supply-side 

(production) causes, such as idiosyncratic technology shocks, management influences, R & D efforts, or 

investment patterns.1 

In this paper I turn my attention to the demand (i.e., output market) side, and look at how 

market structure can cause such within-industry heterogeneity to persist.2  I argue that across-plant 

differences in output market conditions are partially responsible for observed persistent productivity 

dispersion—and in fact, the dispersion of that dispersion.  The specific channel through which this 

posited influence flows is variable output substitutability in a world of product differentiation.  The more 

difficult it is for consumers to switch between competing suppliers, the greater the amount of dispersion 

that can be sustained.  I will focus here on a particular component of substitutability, geographic market 

segmentation created by transport costs, and examine its impact on productivity dispersion within a 

single industry.  The purpose of this paper, however, is not to give the final word on transport costs and 

productivity in a particular industry.  Instead, I hope to show through a detailed case study—where 

many potentially confounding factors are held constant—how transport costs as well as other 

substitutability factors might impact productivity variation and levels throughout the economy. 

The rationale for using output market effects, and substitutability specifically, to explain the 

degree of within-industry productivity heterogeneity is more readily apparent when we consider how 

                                                 
1 Just a sampling includes Jovanovic (1982) and Ericson and Pakes (1995).  See Bartelsman and Doms (2000) 

for a review of this literature. 
2 There are supply-side stories that can explain persistent dispersion as well.  I simply want to highlight 

another piece of the puzzle, to my knowledge not previously formalized, from the demand side. 
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such wide efficiency variation can exist in equilibrium.  After all, output should tend to be reallocated to 

more productive plants over time.  High-productivity plants are able to produce output at lower cost 

than industry rivals, allowing them to grab additional market share by undercutting their opponents’ 

prices without sacrificing profit rates.  We might expect this process to redistribute most or all of an 

industry’s production to a select few high productivity plants.  Output and productivity patterns like this 

are not usually observed in the data, however; the overwhelming weight of empirical evidence indicates 

widely varying producer productivity levels within nearly every industry. 

What prevents this output reallocation process from occurring?  Some possible explanations, 

such as demand booms (which allow nearly anybody to operate profitably temporarily), are short-run 

stories.  They cannot explain why we see large within-industry productivity dispersion throughout the 

business cycle.  Persistent technological disparity driven by supply-side factors may play an important 

role.  However, there is almost certainly more to the story.  Imperfect output substitutability is a long-run 

explanation that is likely to account at least in part for the observed productivity dispersion.  For 

example, microbrewers may not produce their output at nearly as low a unit cost as Miller or Anheuser-

Busch, but they can survive (and even thrive) in the long-run marketplace because segments of the 

population prefer microbrews to mass-produced beer and are willing to pay the higher unit prices 

necessary to support the microbrewers, rather than buy from their competitors. 

In Syverson (2000) I examine the role across-industry differences in measurable output 

substitutability factors play in determining the equilibrium distribution of plant-level productivity within an 

industry.  The testable premise of that work is that industries with less output market segmentation (i.e., 

greater substitutability) should have plant-level productivity distributions that have less dispersion and 

higher central tendency than distributions in industries with more segmented markets.  The intuition 

behind this notion is simple.  Greater substitutability makes it easier for customers to shift purchases to 

more efficient producers, driving plants at the bottom end of the productivity distribution out of business 

and raising the bar for successful entry.  This truncation of the distribution lowers productivity dispersion 

and increases the average efficiency level in the industry. 

This paper builds upon that theme, but takes a much more directed approach by looking at the 

influence of a single source of market segmentation within one four-digit SIC industry.  Instead of relying 
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on output substitutability variation across industries to explain differences in industry productivity 

distributions, this study investigates how within-industry market segmentation creates productivity 

dispersion within and between these market segments.  A single-industry case study is a useful 

complement to interindustry work.  Its narrow focus implies that the results found here do not have the 

comprehensiveness of the across-industry study, but it benefits from the fact that the influence of 

technological differences on productivity heterogeneity has largely been removed.  The industry choice 

for the case study also isolates the effect of a single source of market segmentation that has inherent 

interest to a significant body of economic research: transport costs. 

The industry I focus on is ready-mixed concrete (SIC 3273).  It has a number of characteristics 

that make it very favorable for this study.  First, of course, industry production is subject to substantial 

transport costs.  This creates a series of quasi-independent geographically segmented markets—all 

potentially subject to idiosyncratic demand movements.  I look at how output substitutability differences 

(manifested through competition among varying numbers of producers for a given set of consumers) 

across these local markets affect the plant-level productivity distributions within them.  High transport 

costs also result in an industry characterized by a large number of geographically dispersed 

establishments, which is useful in the empirical portion of the paper.  Finally, industry output is relatively 

homogeneous.  This diminishes the influence of physical product differentiation on the plant-level 

productivity distribution, which I have found in Syverson (2000) to have a substantial effect across 

industries.  This sharpens the focus on geographic market segmentation rather than sources of aspatial 

market heterogeneity.  

I model and empirically test a competitive market structure that results in local concrete markets 

with high demand density (demand per unit area) having productivity distributions distributed more 

narrowly around a higher mean than those in low density markets.  Further, plants in these higher-

density markets tend to be larger and each serve a greater number of customers.  The mechanism 

through which this happens will be explained in detail below, but can be summarized as follows.  A 

larger market requires more producers to serve it.  The larger number of concrete establishments in a 

fixed market area leads to greater output substitutability for concrete buyers.  High substitutability and 

the corresponding rise in competitive pressures imply in turn that low-efficiency plants cannot operate 
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profitably, given the ability of customers to switch suppliers.  These low-performing producers are 

forced out of business, truncating the low end of the plant-level productivity distribution.  The resulting 

long-run equilibrium yields productivity distributions in larger markets that have less productivity 

dispersion, higher average productivity, and a greater share of output produced by high-efficiency 

plants.  This also causes a curious between-plant form of returns to scale: producers in larger markets 

are more efficient on average, but not because plants become more productive as they themselves 

become larger.  Instead, the observed scale effect is the product of selective survivorship: less 

productive establishments are eliminated as markets grow. 

It is easy to imagine how geographic market segmentation consequences can extend beyond the 

ready-mixed industry, especially into manufacturing industries with low value-to-weight outputs and the 

retail sector, but also into other industries to a lesser degree.  Imperfect substitutability created by 

transport costs can thus explain a portion of the persistent productivity heterogeneity throughout the 

economy. 

The paper is organized as follows.  I begin by constructing and simulating a theoretical 

framework that formalizes my intuitive premise.  This is followed by a discussion of plant-level 

productivity estimation methodology, where I introduce a novel estimation procedure that avoids the 

potential pitfalls of commonly used methods.  After reviewing the data, I present the empirical results 

and test them for robustness to several identification assumptions.  A conclusion follows.   

 

I. Theory 

 To formalize the story linking demand density, the number of producers, output substitutability, 

and the local productivity distribution, I require a theoretical framework that incorporates heterogeneous 

producers and contains some notion of consumers choosing among suppliers with differentiated 

products (here, differentiation is with respect to location within the market).  Further, it should allow the 

endogenous determination of the equilibrium plant productivity and output distributions, and offer 

testable implications as to the nature of these as exogenous factors vary.  The primary exogenous 

variable that I am interested in is demand density, of course, so the model should incorporate this 

variable into equilibrium determination.  I meet these requirements by extending the framework first 
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presented in Salop (1979) to allow for heterogeneous producer costs.  The resulting model, described 

below, incorporates these items and serves as a theoretical foundation for my empirical work. 

 

Model: Market Structure 

Consumers, each having an inelastic demand for one indivisible unit of ready-mixed concrete, 

seek to maximize the surplus of their concrete purchases, given as 

(1)      
0 if         0
1 if  
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


=
=′−

=
y
yp
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θ

 

where y is the quantity of concrete purchased, θ is the benefit obtained from the concrete, and p' is the 

price paid by the consumer inclusive of the cost of transporting the concrete from the plant.  Clearly, the 

consumer will purchase if θ > p'.  I assume for simplicity that consumers are identical and have a high 

enough valuation of concrete (a large enough θ) such that they always purchase a unit in equilibrium. 

A continuum of such consumers is evenly distributed around a circle of unit circumference with a 

density of D consumers per unit of length.  Given the preference assumptions, this implies that total 

quantity of concrete sold in the market will be D.  This demand density D is the exogenous variable of 

focus; I draw testable empirical implications from its derived effects on a number of the model’s 

characteristics. 

N concrete plants, evenly spaced around the circle, serve this market.  Each producer 

manufactures a homogeneous product and is subject to an identical fixed production cost F, as well as 

an idiosyncratic marginal cost ci drawn from a common distribution.  Producers sell their output to 

nearby consumers for a factory-door price of p plus the transport cost of t per unit length from the plant 

to the customer.  That is, p' = p + tx, where x is the length of the arc between the plant and the 

customer.  I assume that each plant’s cost draw and price are observed by all producers in the market. 

I examine equilibria where there is a consumer between any two neighboring plants who is 

indifferent between purchasing from either producer.3  The location of this consumer depends, of 

course, on the prices of the two plants and transport costs.  For any two neighboring plants i and j, the 

indifferent consumer is located at a length x i,j from plant i, where x i,j solves 

                                                 
3 This is the “competitive” regime described by Salop (1979). 
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(2)     
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and pi and pj are the factory-door prices set by plants i and j, respectively.  Thus 
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Any consumers on the (shorter) arc between plants i and j who are closer than this distance to plant i 

purchase from i, while those further away (but still between the two plants) buy from j. 

Using a numerical index to differentiate individual plants, any plant i with neighbors i-1 and i+1 

will have sales equal to (dropping the first subscript in x):4 

( ) (4)     11 Dxxq iii +− +=  

and profits of 

( )( ) (5)     11 FDcpxx iiiii −−+= +−π  

Each plant chooses its (factory-door) price pi to maximize its own profits.  By substituting (3) 

into the profit equation and maximizing, it is a straightforward matter to derive the implied optimal price 

for plant i as 

(6)     
224

11* iii
i
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Thus a plant’s optimal price increases in its neighbors’ prices, per-distance transport costs, and its own 

marginal cost.  It decreases with the number of producers in the market.  All of these implications are 

sensible. 

Each producer’s optimal price directly depends only on the prices of the plants neighboring it on 

either side.  However, because each of those neighboring plants’ prices depend in turn on the prices of 

their two neighbors and so on, every plant’s optimal price depends on the prices of all market 

producers.  Thus optimal prices are simultaneously determined.  Finding the expression for plants’ 

optimal prices is facilitated by expressing (6) for all plants in vector form, imposing the fact that each 

plant chooses its optimum price in response to all of its competitors also pricing optimally (bold face 

                                                 
4 Note that because of the circular shape of the market, the numerical index must “wrap” around itself as 

plants are consecutively numbered around the circle.  That is, in a market with N plants, plant 1 has plant 2 and plant 
N as neighbors, not plant 2 and plant 0.  This peculiarity comes into play below in the configuration of a selector 
matrix that selects the two neighbors of each plant in the market. 



 
 

7

script denotes matrix and vector quantities): 
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The vectors p* and c contain the prices and cost draws of all plants on the circle, from 1 to N.  The 

matrix i is a vector of N ones, making the second term on the right side a vector with every element 

equal to the quantity t ÷ 2N.  So is a selector matrix that selects for each plant certain values (prices 

here) of the two neighboring plants.5 

Equation (7) is solved for p* to yield Nash-optimal prices for all plants in terms of the model’s 

fundamentals: 
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S is not a diagonal matrix, so each plant’s optimal price is determined by the cost draws of every plant.  

In fact, S has properties that make it a weighting matrix determining how much importance a plant puts 

on its own and each of the other plants’ costs when computing its optimal price.  One such property is 

that the sum of all elements in each row of S is one, of course.  Further, the elements on the main 

diagonal are also the largest elements in their respective rows (i.e., a plant factors its own cost most 

heavily into optimal price setting).  The magnitude of the elements declines with increases in the 

circumferential distance between the two plants corresponding to the element’s row and column indices 

(i.e., the cost draws of plants on the opposite side of the circle factor least into price-setting).  S is 

symmetric, and all elements along a given diagonal are equivalent (i.e., only relative positioning around 

the circle matters).  All the elements are also positive.  While higher competitors’ costs imply that a 

producer can sell more at a given price, they also allow a producer to increase profits by raising 

markups with less fear of losing business to neighbors.  The fact that all elements of S are positive 

implies that this second effect dominates in this model; competitors’ costs enter with positive weights 

into optimal pricing.  Because the row elements of S sum to one, the term (t/N)Si is simply a vector with 

                                                 
5 The circular market shape means that for the arbitrarily numbered “first” and “last” plants, the elements of 

So corresponding to one of their neighbors are well off the main diagonal.  This is because these two plants are 
neighbors to each other on the circle, even though their index values are quite different.  Thus So has elements equal 
to 1 in the first off-main diagonals and in the lower-left and upper-right corners, and 0 everywhere else. 
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identical elements equal to t/N (that is, i is an eigenvector of S).6 

In the appendix, I derive the following expression for plants’ quantities sold at their optimal 

prices: 

( ) (9)     2
2
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It is important to note that it possible for individual elements of q* to be negative if a plant has 

sufficiently high costs relative to its neighbors.  Negative market areas and output do not make practical 

sense, of course.  I will discuss further below how such plants are eliminated from the market in a 

shakeout process. 

Returning to the expression for optimal prices, it is a simple matter to obtain an expression for 

per-unit margins as 

( ) (10)     * icIScp
N
t

+−=−  

I show in the appendix that this expression is equivalent to the quantity inside the brackets in equation 

(9).  In other words, a plant’s price-cost margin is equal to its market area (as measured by the length 

of the arc in which its customers reside) multiplied by the transport cost t.  This affords an expression 

for a plant’s profit, conditional upon its optimal quantity being positive: 
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where si,j is the i,j-th element of S (the cost-weighting matrix).  As mentioned above, the term inside the 

brackets must be positive for the plant to produce; while negative values of this expression 

mathematically create positive profits, they imply the unrealistic existence of negative outputs.  Profits 

predictably increase in other plants’ marginal costs and decrease with one’s own cost.  The 

characteristics of S ensure the desirable property that the costs of plants nearer on the circle to plant i 

have a greater impact on i’s profits than those further away (that is, there is greater impact when |i – j| is 

small—making exception for the “wrapping” of the index).  Notice that if every plant shares the same 

                                                 
6 It is interesting (and encouraging) to note that the homogeneous-producer equilibrium modeled by Salop 

in his original work is a special case of this framework.  This can be easily seen by setting each element of the cost 
vector equal to an identical value c.  In this case, the right-hand-side of (8) is identical for every plant.  The implied 
symmetric optimum price is p = c + t/N, which is the solution in Salop (1979). 
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marginal cost, the second and third terms within the brackets cancel each other out and yield market 

areas of 1/N and per-plant profits of tD/N2 – F.  This is Salop’s homogeneous-producer solution; it is a 

special case of this generalized framework. 

 

Model: Entry, Shakeout, and Equilibrium 

 The model as specified above is for an arbitrary number of plants.  The equilibrium number of 

producers is determined through the following entry–shakeout process.  An infinite pool of potential 

entrants is assumed to be available.  Entrants must pay a sunk cost of entry G before receiving their cost 

and location draws.  Marginal cost draws are independently and identically distributed, so all plants 

entering the market do so with identical expectations of their own and their competitors’ cost draws.  

Given free entry, the number of plants initially entering the market, Nentry, will be the largest number that 

supports nonnegative expected profits from entry.  Expected profits at entry equals the product of 

average plant profits in the post-shakeout equilibrium and the probability of a plant surviving the 

shakeout, minus the sunk entry cost.  That is, free entry implies that 

( ) [ ] (12)     0Entry Successful|ProfitsShakeout -PostEntry SuccessfulPr =−⋅ G  

where both components of the expected operating profit at entry are functions of the number of 

entrants.  For a given value of D and the other exogenous parameters, if both equilibrium profits and the 

probability of surviving shakeout decline (weakly) monotonically in the number of entrants, there is a 

unique number of entrants such that the expected entry profits for (Nentry+1) producers is negative.  I 

assume this is the case for now and verify it in the simulations below. 

 The Nentry entrants simultaneously receive independent marginal cost draws from a common 

distribution as well as a location draw on the circle.  I require plants to be spaced evenly around the 

circle, so the initial distance between plants is 1/Nentry.  After the entrants have received their cost and 

location draws, a shakeout process begins and no further entry is possible.  Each producer knows its 

own cost realization as well as the cost draws and locations of every other producer.  Optimal prices, 

quantities, and profits based upon these cost and location draws are computed according to (8), (9) and 

(11). 

I define a heterogeneous producer equilibrium to be one where all plants in the market, given 
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their marginal cost and location draws, are optimally producing positive quantities and making 

nonnegative profits.  If all of the Nentry initial entrants are able to do so given their marginal costs and 

locations, then the original configuration is an equilibrium.  However, this is unlikely.  At least one plant 

in this initial configuration will most probably have a high enough marginal cost relative to its neighbors’ 

costs so that either its computed optimal output and margin are negative, or if these values are positive, 

then profits are negative because revenues are less than the fixed cost F.  To pin down the nature of an 

equilibrium where all producers have nonnegative profits, I specify a shakeout process which eliminates 

unprofitable producers from the market that is governed by a sequential exit rule.  The nature of the exit 

rule is as follows. 

For any given number of entrants, the lowest-performing plant in the market is identified for 

elimination.  “Lowest performing” is defined as either the plant with the most negative optimal quantity—

if one or more such plants exist—or the plant with the lowest negative profits if all optimum production 

quantities are positive.  Either situation implies the plant will not produce in equilibrium.  In the former 

case no positive output can be supported given the cost realizations; any production will yield a loss of -

F.  The latter also implies such producers are better off exiting immediately than they are forging ahead 

to produce at a loss.  After this exit, the remaining producers costlessly redistribute themselves evenly 

around the circle (however they cannot change their relative positions—their ordinal location in the 

index), and optimum strategies are recomputed for the new configuration.  The shakeout consists of 

repeating this process of eliminating the lowest-performing producer, redistributing remaining plants, and 

computing optimum prices until a configuration is reached where all remaining producers are making 

nonnegative profits.  At that point, an equilibrium has been achieved. 

It is important to note that while exit is sequential, it does not take place in a dynamic 

framework.  Rather, I am seeking a steady-state equilibrium arrived at through an iterative, 

performance-order exit rule.  Of course, this process should not be thought of as a literal description of 

the evolution of an industry.  I am not proposing that producers in a given market continually pick up 

their factories and move to a new location as competitors are eliminated over time.  Instead, the model 

can be thought of as a description of a game of simultaneous entry among heterogeneous producers, 

where plants track their own likely evolution through the iterative exit process and make production 
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decisions based upon the computed outcome.7 

Examination of the expression for plant-level profits (11) reveals the nature of the necessary and 

sufficient conditions for existence of an outcome where all market producers operate profitably.  The 

only terms that are not common to all plants (and as such the source of profit differences across 

producers) are those containing plant-specific cost draws.  Clearly, the plant with the lowest sum of 

these terms will have the lowest optimal quantity (and price-cost margin) and be the lowest-performing 

producer.  A necessary condition, then, for an equilibrium to exist is that the smallest value of this sum 

among all producers (the value for the lowest-performing plant) must be great enough to yield positive 

profits.  That is, 

( ) (13)      1min ,, N
t

D
tF

cscs
ij

iiijjii
−≥
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It is apparent in this expression that producers with relatively high marginal costs have more difficulty 

surviving the shakeout to produce in equilibrium.  As the bar for profitable production is raised, 

relatively high-cost plants find it more difficult to profitably operate, narrowing the equilibrium cost 

distribution and lowering its central tendency.  This feature of the model is crucial to creating the 

empirical implications explored below.  Tightening of the necessary condition can occur either directly 

through changes in the exogenous parameters D, t, and F, or from their resulting impact on the number 

of producers. 

A sufficient condition for the existence of such an equilibrium can be easily derived if the cost 

distribution is bounded from above and below.8  The most difficult scenario for a plant to meet the 

profitable production requirement is for it to have the highest possible cost draw while all other 

producers have the lowest cost draw.  If a producer can profitably operate in this scenario, the sufficient 

                                                 
7 The enormous number of exit order permutations makes it impossible to prove that the exit rule is always a 

subgame-perfect equilibrium.  However, it is quite unlikely that any lowest-performing plant faced with the exit 
decision will ever find it optimal to deviate from the rule and remain in the market.  This is because the strongest 
producers always stay in, and only a plant’s weakest competition (though they are still in stronger position than the 
possibly deviating plant) would exit in the case of a deviation.  This particular exit rule, while not being a perfectly 
verifiable equilibrium concept, seems the most sensible of the alternatives.  Hence, when I refer below to the 
outcomes from the lowest-performing-out exit rule as equilibria, I am not using it in the strictest sense.  That being 
said, this particular exit rule does not drive the results derived below.  Indeed, any process which leads to weaker 
(high-cost) plants having a greater likelihood of exit than low-cost plants will yield similar implications.  To verify this, 
I simulated the model using a rule where the exiting plant each round is chosen entirely at random from those plants 
with negative quantities or profits.  I found that this made no qualitative difference to the outcomes. 
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condition for all producers operating profitably has been met.  Designate the largest and smallest 

possible draws cl and ch, respectively.  In this case, the summation of competitors’ costs simplifies as 

(recall that the elements of any row of S sum to one): 

( ) (14)     1 ,,, ∑∑
≠≠

−==
ij

liijilj
ij

ji cssccs  

Using this simplification and (13), we can express the sufficient equilibrium condition as 

( )( ) (15)     1 , D
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N
t

ccs lhii −≤−−  

The fact that the particular value of expression (13) depends upon specific realizations of 

marginal costs and relative locations precludes an analytical solution for the critical cutoff cost value.  It 

also implies that given values of the exogenous parameters may yield many quantitatively different 

outcomes, each with varying numbers of producers and cost distributions.  Hence, numerical simulations 

of the model are required to ascertain the particular characteristics of equilibria as demand density 

changes. 

 

Model: Implications for Demand Density’s Effects 

 While numerical simulation of the model is necessary to precisely compute the impact changes in 

demand density D have on equilibrium outcomes, it is instructive to discuss the possible mechanisms 

through which demand density could affect a heterogeneous-producer equilibrium.  Specifically, in order 

to support the intuition discussed in the introduction, I am concerned with density’s impact on the cost 

distribution and plant size.  Examination of the expression for plant profits (11) offers helpful insight. 

 The direct density effect shifts up the profit distribution by increasing sales within plants’ market 

areas.  As such, the direct impact makes it easier for plants to operate profitably, as long as their 

optimal market area is positive.  However, there are two countervailing indirect density impacts that 

make it more difficult for plants (particularly high-cost ones) to produce profitably.  The first is the rise in 

the number of equilibrium producers as density increases.  Because greater density means there are 

more customers per each market arc length, a smaller market area is necessary to make positive profits. 

 This can (and does, as I will show) result in equilibria with increasing numbers of producers as density 

rises.  Ceteris paribus, having more producers in a market lowers profits by decreasing sales per plant in 

                                                                                                                                                             
8 For unbounded cost distributions, just assume arbitrarily high and low realizations. 
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equilibrium.9 

There is a further indirect influence of demand density on the equilibrium that is specific to the 

heterogeneous-producer case.  As I will show, the number of initial entrants rises with density.  If the 

equilibrium number of producers does not rise proportionally to the number of entrants (and it does 

not), a greater fraction of plants exit during the shakeout process.  Because, as seen above, high-cost 

plants tend to have the lowest quantity and profit levels, they are more likely to be forced out of the 

market.  As the fraction of plants eliminated during the shakeout rises, then, the cost distribution of the 

plants producing in equilibrium is further truncated from above. 

This process, when combined with the impact of a greater number of equilibrium producers, 

lowers the prospects of high-cost plants relative to low-cost producers.  If the sum of these indirect and 

negative impacts of density is great enough to offset density’s direct and positive influence—and I will 

show numerically that it is—then increases in demand density yield heterogeneous-producer equilibria 

with less cost dispersion and lower average costs in the market.  If we think of productivity as some 

reciprocal function of marginal costs (it will be exactly the reciprocal if the wage is normalized to one 

and the marginal cost is equal to the labor required to produce each unit), then higher density markets 

have less productivity dispersion and higher means.  This is, of course, the notion posited in the 

introduction. 

The influence of demand density on the number of producers serving each customer and on 

average plant size depends on how the number of equilibrium producers varies with density.  The plant-

to-demand ratio for a market can be expressed as N/D.  Obviously, if the elasticity of the equilibrium N 

with respect to D is less than one, the ratio of producers to customers falls as density increases.  As will 

be seen, this is the case.  Likewise, because the average output of plants in a market is D/N, average 

plant size in the model necessarily increases as D grows. 

 

Model: Numerical Simulation 

 I numerically simulate the model to determine the influence of changes in demand density on the 

heterogeneous-producer equilibrium.  I outline the procedure for doing so and present the results here. 

 Given selected values for the exogenous variables t, F, and D, an equilibrium is computed in 

                                                 
9 In the homogeneous-producer equilibrium, the increase in the number of producers is just enough to 

counteract the positive profit effect of a density increase, sustaining zero profits for any density level.  However, 
because (as will be seen) heterogeneous-producer equilibria have fewer plants in equilibrium than the homogeneous-
plant case, the adverse effect on profits from the greater number of producers is not large enough to fully counteract 
density’s direct influence. 
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two steps.  The first computes the number of initial entrants Nentry by computing the average expected 

profits from entry for various numbers of entrants.  The second finds post-shakeout outcomes for this 

number of entrants. 

In both steps, equilibria are computed in the following manner.  For an arbitrary number of initial 

entrants No, a vector of independently and identically distributed marginal cost draws of length No is 

created; these are the marginal cost draws of each plant at entry.  A single plant’s cost must keep its 

relative position within the vector throughout the shakeout process.  This requirement, in effect, makes a 

plant’s relative position on the circle a random draw and preserves the relative positioning of plants.10 

 Optimal prices, quantities, and profits are computed based on these cost draws.  If all plants 

have nonnegative market arc lengths and profits, an equilibrium has been achieved.  Summary statistics 

of the equilibrium plant-level distributions (such as the number of producers, the average markup, 

average profits, and the average and standard deviation of the plant productivity levels) are then 

calculated.  If there are plants with negative profits or quantities, shakeout proceeds according to the 

exit rule until an outcome is reached where all plants are profitable.  During the shakeout, the relative 

positioning of the remaining plants is preserved, and optimal prices and quantities are computed 

accounting for the fact that plants become spaced further apart after an exit. 

To compute the number of entrants for each demand density level that is consistent with free 

entry, the model is simulated repeatedly at a fixed density value while increasing the number of entrants 

incrementally.  Average profits and the fraction of initial entrants that survive the shakeout are computed 

at equilibrium.  Because equilibrium outcomes are themselves stochastic (due to variation in initial cost 

and location draws), I average these values across 5000 equilibria for each No to compute the expected 

value of entry with that number of entrants.  Given that all plants are identical prior to receiving their cost 

and location draws, the fraction surviving in equilibrium is also the ex-ante probability of surviving the 

shakeout.  The product of this probability and average equilibrium profits gives the expected value of 

entry for that No and density level.  If this is greater than the sunk cost G incurred to receive a cost and 

location draw, No is increased by one and the process is repeated.  This continues until the expected 

value of entry net of the sunk cost is negative.  Nentry for a given density level is simply the largest value 

of No such that expected net profits at entry are nonnegative.11  I repeat this process for each demand 

                                                 
10 The costs of each producer’s immediate neighbors are the costs above and below the plant’s own cost in 

the vector, with the exception of the first and last elements (plants).  The first plant has its neighbors’ costs in the 
second and last position on the vector, and the Nth plant’s neighboring costs are in the (N-1)th and first positions. 

11 Nentry will be necessarily be unique if both the probability of surviving shakeout and equilibrium profits are 
weakly monotonically decreasing in No for a given demand density level.  I found this to be true (averaging across a 
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density value. 

Once Nentry is known for each demand density level, the model is simulated with this number of 

entrants and descriptive statistics are calculated from the equilibrium.  Again, to reduce statistical noise 

in the results, I average these summary statistics over 10,000 equilibria for each density level. 

Figures 1-5 show equilibrium summary statistics from simulations across a range of demand 

density levels.  Plant marginal cost draws are uniformly distributed on the interval [0.9, 1.1] and the 

exogenous variables are set as follows: t = 1, F = 0.00025, and G = 0.00015.  Figure 1 shows the 

primary testable hypotheses of the paper, and indicates that the model is consistent with the intuitive 

notions forwarded in the introduction.  It presents plots of three moments of the equilibrium productivity 

distribution (the standard deviation, the simple mean, and the mean weighted by plant output shares) as 

demand density varies.  Clearly, higher market density increases average market productivity levels 

while decreasing dispersion.  There appears to be a diminishing marginal impact of density increases for 

both productivity dispersion and levels, but with a highly stylized model it may be imprudent to extend 

this implication to the data.  The signs of the functions’ first derivatives are the primary concern here.  

The roughness seen in the plots especially at low density levels is an artifact of the integer restriction on 

the number of entering plants, suggesting that integer constraints may play noticeable roles in smaller 

markets.12 

Figure 2 shows how demand density influences the number of producers at entry and after the 

shakeout.  The number that would be supported in the standard symmetric-cost (homogeneous 

producer) equilibrium is also shown for reference.  All are increasing concave functions of density.  As 

expected, the post-shakeout number of plants is uniformly lower than the number entering, as well as the 

number supported in the homogeneous producer case.  The number of entrants is far greater than in the 

symmetric cost equilibrium (where every entrant ends up producing).  Figure 2 also depicts the most 

crucial factor driving the patterns in local productivity distribution moments shown in Figure 1: the gap 

between the number of entrants and those that survive the shakeout grows with increases in demand 

                                                                                                                                                             
number of outcomes because of their stochastic nature) in my computations.  This makes intuitive sense.  We know 
from the homogeneous producer case that a total market size of D can support a finite number of producers with 
nonnegative profits.  Hence, as the number of entrants increase, the fraction that make it through the shakeout will 
decline on average.  (For large D and small No, all entrants will be profitable upon entry, so that while the probability 
of survival may not always decrease as No grows, it does not increase.)  Likewise, given that a limited market must be 
split between a greater number of producers, equilibrium profits for a fixed D decline as No grows. 

12 This occurs when an increase in demand density is not enough to spur an additional entrant, even though 
it does increase the average number of equilibrium producers.  In such cases, the shakeout process is slightly less 
rigorous at the higher density level, causing the equilibrium productivity moments to exhibit step-like behavior at 
these locations.  The effect might even be strong enough to cause small non-monotonicities in the function. 
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density (except when the integer constraint on entrants binds).  As the proportion of the initial entrants 

eliminated during the shakeout grows with higher density levels, plants with cost/productivity draws that 

are marginal at lower density levels are forced to exit.  This further truncates the productivity distribution 

from below, and leads to higher-density markets exhibiting increased central tendencies and decreased 

dispersion in their productivity distributions. 

The connection between the intensity of the shakeout and the productivity moments is most 

vividly displayed in Figure 3.  Here, I plot the how the fraction of entrants that survive the shakeout—

the unconditional probability of successful entry—and the average productivity level of equilibrium 

producers change with the level of D.  As can be seen, the two functions are nearly mirror images of 

each other; the average productivity level rises as the fraction of successful entrants falls.  Even the 

jaggedness in the entry probability series (again arising from integer restrictions on the number of 

entrants) is reflected in the average productivity levels.  These patterns are also mirrored in the functions 

of the other productivity moments (see Figure 1).  It is apparent that changes in the shakeout’s intensity, 

reflected in the fraction of entrants surviving to produce in equilibrium, are responsible for demand 

density’s influence over the productivity distribution moments. 

The implications regarding market structure’s ability to truncate the distribution of producers’ 

cost levels is not unique to this model.  There are other heterogeneous-producer models, such as those 

of Hopenhayn (1992) and Melitz (1999), that incorporate an endogenously determined cutoff cost 

(productivity) level above (below) which producers cannot profitably operate.  By changing demand-

side factors in these models (for example, in the Melitz framework, by allowing the elasticity of 

substitution between the producers’ outputs to be an endogenously determined function of producer 

density), one can obtain similar results.  I choose the current model because it includes an explicit spatial 

structure, missing from other models, for an industry in which purchase decisions are made in part on a 

geographical basis. 

Figure 4 shows how average markups and profits change with demand density.  Equilibrium 

average markups decline asymptotically toward one as density rises, but average profits climb.  

Therefore the greater substitutability customers have in higher-density markets yields more competitive 

pricing, but at the same time, producers who survive the shakeout more than make up for this with 

increased sales in their market areas.  This contrasts with the homogeneous producer case, in which the 

lower margins exactly counteract the profit-increasing tendencies of higher market densities. 

Figure 5 plots the behavior of average plant size (measured in output terms) as demand density 

changes.  It rises with density.  Its rate of increase relies upon the difference between the growth rates of 
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density and the number of producers in equilibrium.  The ratio of producers to demand units is simply 

the reciprocal of average plant size in this model, so I do not plot it here.  The model implies that this 

ratio decreases in density, of course. 

The results above pertain to the impact on the model of changes in demand density for fixed 

values of the other exogenous parameters.  I have also simulated the model using various values of t, F, 

and G.  Changes in these exogenous parameters do not affect the qualitative nature of density’s effects. 

 These changes do, however, cause quantitative shifts in the model’s outcomes.  I briefly summarize 

them here. 

An increase in transport cost t induces greater entry, allows more producers in a market of a 

given size, and allows increased markups.  At the same time, it lowers post-shakeout profits, increases 

productivity dispersion, decreases the average productivity level, and shrinks the producer-customer 

ratio.  These outcomes result from the loss of substitutability customers suffer when transport costs rise. 

 Rising transport costs have the same qualitative impact on the model as does a drop in demand density 

because both induce a decrease in substitutability. 

A rise in the fixed cost of production F lowers the number of entrants and post-shakeout 

producers, while at the same time increasing the sustainable markup, post-shakeout profits, average 

productivity levels, and producer-customer ratio.  Productivity dispersion declines.  These results make 

sense because increased fixed costs eliminate those plants with marginal prospects for profitability.  

Therefore only the more efficient producers survive shakeout when F rises.  This both truncates the 

productivity distribution further from below and results in fewer producers in equilibrium, serving to 

increase post-shakeout markups and profits. 

A rise in the sunk cost of entry G also lowers the number of entrants and post-shakeout 

producers.  This is unsurprising given that high sunk costs deter entry.  The decline in the number of 

producers serving a given market size results in higher markups and post-shakeout profits, just as in the 

case of a rise in fixed production costs.  However, the effect on the productivity distribution is in the 

opposite direction: a greater sunk entry cost decreases average productivity levels and increases 

dispersion.  These results are driven by the fact that producers must determine whether to incur the sunk 

cost before they receive their cost and location draw, rather than after, as is the case with the fixed 

production cost.  While the production cost affects relatively high-cost plants much more adversely than 

low-cost entrants (it reduces profits for more efficient producers but drives less efficient ones out 

altogether), a high entry cost affects all plants equally because plants do not yet know their prospects 

when they pay the entry cost.  The negative effect of sunk costs on the number of entrants is therefore 
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greater than its resulting indirect influence on the number of post-shakeout producers.  Hence, while high 

fixed production costs tend to cleanse the market of inefficient firms, high entry costs make it easier for 

low-productivity plants to successfully enter by lowering the intensity of the shakeout. 

To summarize the empirical implications of the model that I test, an increase in demand density 

in a market implies the following: 
• The dispersion of the local productivity distribution declines. 
• The central tendency of the productivity distribution, in both simple and quantity-weighted terms, 

rises. 
• The number of producers per unit of demand (e.g., per customer) falls. 
• The average size of producers (as measured in output levels) climbs. 

I now discuss the methodologies used to test these assertions. 

 
II. Productivity Estimation and the Market Segmentation Method of Instrument 
Identification 
 The empirical portion of this paper requires plant-level productivity estimates.  Typically, 

establishment productivity estimates are the residuals of an industry-wide production function estimated 

using plant data.  This procedure implicitly assumes that all plants in the industry operate with the same 

production technology.  It is a common assumption in such studies, and is likely appropriate in the case 

of ready-mixed concrete, which is produced by largely the same process everywhere (U.S. Bureau of 

Labor Statistics (1979)).13 

Methods of estimating the industry production function require some attention.  A naive 

procedure would simply regress plant outputs on some functional form of inputs using ordinary least 

squares.  However, as Marschak and Andrews (1944) first pointed out, simultaneity of productivity and 

inputs cause such methods to provide inconsistent estimates of production function parameters (and 

therefore productivity values as well).  Researchers have struggled since then to circumvent the 

endogenous inputs problem through the use of various econometric techniques, some more successful 

than others.14 

 Olley and Pakes (1996) propose a three-step algorithm that has since become a standard 

technique for estimating production functions with plant-level data because of its clever treatment of 

endogeneity and relative ease of implementation.15  The thrust of their procedure is inversion of the plant 

                                                 
13 I will test my results for robustness to technology differences across markets. 
14 Griliches and Mairesse (1995) survey these methods and their relative benefits and shortcomings. 
15 For examples of its application, see Griliches and Mairesse (1995), Aw, Chen, and Roberts (1997), and 

Levinsohn and Petrin (1999). 
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investment function to back out a productivity proxy polynomial that contains only producer 

observables.  They demonstrate this is mathematically consistent if plant investment is a monotonically 

increasing function of plant productivity, and if productivity is the only unobserved establishment-specific 

variable in the investment function.  These assumptions ensure that, given a plant’s capital stock, there is 

a one-to-one mapping between plant productivity and investment, allowing one to control for 

unobserved plant productivity values with observed investment and capital stocks. 

Unfortunately, the ready-mixed concrete industry is a particularly poor fit for the Olley-Pakes 

(O-P) algorithm.  As I argue in Syverson (1999), the required assumption that productivity is the only 

unobserved plant-specific state variable in the investment function is unlikely to hold when output 

markets are segmented.  And because of transport costs, the ready-mixed concrete industry is highly 

segmented geographically; industry establishments sell a majority of their output to buyers in their 

immediate vicinities.  Under such conditions local markets can yield considerable spatial demand 

variation across producers.  Because they operate so narrowly, geographically speaking, ready-mixed 

plants are very likely to take their idiosyncratic (region-specific) demand state into account when hiring 

inputs.  Demand (or expected demand) is then an additional plant-specific variable in the input demand 

functions of these plants.  As I demonstrate in the same paper, when other plant-specific state variables 

do affect investment, the O-P algorithm can provide biased estimates of production function 

parameters.16  The presence of additional unobserved plant-specific state variables in the investment 

function breaks down the one-to-one relationship between plant productivity and investment, so it is no 

longer possible to pin down productivity levels with investment observations.17 

 Instrumental variables techniques are a preferred alternative in such cases; they offer consistent 

estimates even with endogenous regressors.  In practice, however, obtaining good instruments for plant-

level production data can be a challenging task.  Indeed, the call for methods such as the O-P algorithm 

grew out of a perceived lack of instruments correlated with inputs but uncorrelated with plant-level 

productivity.  A suitable instrument must exhibit some variation across plants to gain any additional 

identifying power from the plant data.  Aggregate or industry-wide series will not suffice.  It is this 
                                                 

16 The Olley-Pakes algorithm also requires a similar assumption about the character of a plant's 
produce/liquidate decision which I contend can also lead to biases under market segmentation.  This point is 
tangential to the discussion here, however, so I will not address it further.  An interested reader should see Syverson 
(1999). 

17 Recently proposed modifications to the Olley-Pakes algorithm—such as Levinsohn and Petrin (1999), 
which advocates using materials rather than investment to back out productivity proxies—are also subject to 
problems when markets are segmented.  In the case of the Levinsohn-Petrin modification, producers operating in 
segmented markets are also likely to account for local demand when making materials purchases.  This eliminates any 
one-to-one mapping between establishment materials use and productivity and results in incorrect proxies. 
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criterion that has caused many researchers who work with plant-level data to forsake the search for 

instruments as too difficult, if not hopeless. 

 I contend that market segmentation—geographic segmentation here specifically—can be 

exploited to identify establishment-level instrument series.  In this way, the very influence that limits the 

applicability of the O-P method in certain cases can be used to obtain consistent estimates.  The key to 

identifying such instruments is recognizing how markets are segmented across the plants of interest.  

Market segmentation, for my purposes, refers to any way in which a seemingly industry- or economy-

wide market is actually comprised of a collection of heterogeneous “local” market units.  (“Local” does 

not necessarily imply that the market is geographically heterogeneous, although that is case here and for 

many other goods and industries.)  That is, markets are segmented whenever there is some degree of 

plant-level separation in an industry's output or inputs markets.  Recognizing such market heterogeneity 

allows identification of instrumental variables, such as measures of local demand or input costs, that will 

exhibit across-plant variation when measured along the dimension of segmentation. 

Shea (1993) argues that measures of construction activity are relevant to inputs and 

approximately orthogonal to productivity in many intermediate construction goods industries, at least at 

the industry level.  Construction is relevant to the input levels of concrete plants because a large portion 

of industry output is used in final construction output; construction activity and ready-mixed plant inputs 

are thus very likely to move together.18  Furthermore, because construction projects generally require 

output from a wide array of industries, the percentage of total costs of final construction firms attributed 

to ready-mixed alone is likely to be relatively small.19  This small cost share makes it less likely that 

productivity movements in the ready-mixed concrete industry will alter the amount of construction 

activity, because idiosyncratic price drops in a single intermediate input will not greatly lower the total 

costs faced by final construction firms.  Therefore, productivity movements in the industry are nearly (if 

not entirely) uncorrelated with final construction activity, satisfying the exogeneity criterion.20 

My technique extends these instruments to the plant level by matching local construction activity 

measures to upstream industry plants in the same geographic market.  The high weight-to-value ratio of 

concrete makes it reasonable to assume that concrete plants sell the vast majority of their output locally, 

                                                 
18 For example, firms engaged in new construction activity purchased 79.8% of 1977 ready-mixed output.  See 

Shea (1992). 
19 Looking at 1977 again, concrete accounted for 6.5% of new construction costs that year. 
20 Shea (1993) offers a more thorough discussion of how one can identify instruments at the industry level 

which are both relevant and approximately exogenous using demand and cost shares. 
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and thus make productive input decisions partly on the basis of local demand.  Comprehensive 

shipments data from the 1977 Commodity Transportation Survey support this; ready-mixed plants 

shipped 94.4 percent (by weight) of their total output less than 100 miles.  Discussions with industry 

managers also offer anecdotal evidence along these lines; most managers stated an ideal delivery 

distance as anything under a 30- to 45-minute drive from the plant.  Therefore local construction activity 

measures should be suitable plant-specific instruments.  We can be reasonably confident that 

construction activity in, for instance, the Lincoln, Nebraska area will influence the input choices of 

concrete producers in Lincoln, but not those in, say, Tucson, Arizona.  Conversely, fluctuations in 

Greater Tucson’s construction business will not affect Lincoln plants.  If construction activity measures 

are spatially disaggregated enough, local activity measures will capture substantial interplant variance in 

the instrument series. 

It is conceivable that, despite the small cost share of concrete in overall construction, 

productivity in ready-mixed plants is still correlated with local construction activity if there are common 

local productivity shocks.  For example, if there are urbanization spillovers affecting all industries in an 

area, these spillovers may boost overall construction activity while simultaneously increasing productivity 

levels in ready mix plants.  Such a condition would of course weaken the exogeneity of my instruments 

and lead to bias.  To eliminate this possibility, I do not use local construction activity measures directly 

to instrument for ready-mixed inputs.  Instead, I regress my construction sector activity measure 

(employment) on a measure of overall economic activity in the same region (total employment) and use 

the residual as my instrument.  Thus I am instrumenting for ready-mixed plant inputs with the component 

of local construction activity that is unrelated to overall activity in the region.  This effectively removes 

the possibility of instrument endogeneity because of common regional productivity shocks. 

 

Local Markets in the Ready-mixed Concrete Industry 

 To test the implications put forth by the earlier model, I must place the ready-mixed plants in my 

sample into local markets.  My chosen geographic market unit is the Bureau of Economic Analysis’ 

Component Economic Area (CEA).  CEAs are collections of counties usually—but not always—

centered on Metropolitan Statistical Areas (MSAs).  The BEA selects counties for inclusion in a given 

CEA based upon MSA status, worker commuting patterns, and newspaper circulation patterns (subject 

to the condition that a CEA contains only contiguous counties).  This ensures that counties in a given 

CEA are substantially intertwined economically.  These 348 markets are mutually exclusive and 

exhaustive of the land mass of the United States, so each is typically comprised of seven or eight 
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counties.21 

I choose the CEA as my unit of analysis because it is the best compromise between several 

conflicting requirements.  The theoretical foundation of this study assumes that local concrete markets 

are essentially isolated geographic units, where plants in one market only competitively interact with 

other plants in their local area.  Any interaction with ready-mixed production units in other markets is 

assumed away.  While there are bound to be some cross-border concrete sales in reality, the 

Commodity Transport Survey shipment data discussed previously testify to the high transport costs for 

the industry.  These plants have very limited operations radii, so if I draw local markets sufficiently large 

enough, I can decrease the amount of cross-market sales occurring in my data.  For this reason, defining 

individual counties as separate markets may be inappropriate; it is likely that a non-trivial fraction of 

ready-mixed produced in the county will be consumed outside of it.  On the other hand, I do not want 

to make markets so large that there is very little competitive interaction between many of the included 

establishments.  Plants placed in too large a market may not all respond to the same market forces 

(either external influences or the actions of industry competitors).  CEAs are a suitable compromise 

between these two poles.  Furthermore, because most are centered around MSAs or other population 

centers (and those that are not are composed of very rural counties), the counties on CEA borders are 

likely to be more sparsely populated with concrete plants.  The bulk of ready-mixed production in a 

market is then centrally located, decreasing the likelihood of between-market sales.  CEAs are also not 

required to adhere to state boundaries, which would sometimes place unwarranted market boundaries 

in economically interconnected areas.22  

 

III. Data 
Local Construction Activity Data 

 The key to implementing the market segmentation principle of instrument identification is 

instrument data that can be pared along the axis of market heterogeneity.  The present case requires 

construction and all-industry activity data at a geographically disaggregate level.  Such data does exist.  I 

use local construction instruments derived from the Census Bureau’s public-use County Business 

                                                 
21 See U. S. Bureau of Economic Analysis (1997) for more detailed information about CEA creation. 
22 A further practical consideration favors the use of CEA-defined markets.  Larger market areas increase the 

number of area establishments, allowing better estimation of productivity distribution moments, but decrease the 
total number of observations, decreasing the precision of estimates.  Most CEAs contain an adequate number of 
ready-mixed establishments to obtain plant-level productivity distribution moments, while still affording a sufficient 
number of market-year observations. 
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Patterns (CBP) annual data over the 1979-1993 period.  The CBP contains Mid-March employment 

by major industry for every county in the United States.  These employment values are my downstream 

activity measures.  Public-use Census data at such a fine geographic resolution often have censored 

observations, but this is a very minor obstacle in the case of the construction sector (SICs 15-17).  The 

sector’s ubiquity and abundance of small firms allows full disclosure of summary statistics in all but the 

smallest of counties.  For those counties with exact construction employment data withheld for the sake 

of confidentiality (roughly 1.5% of the county-year observations), a total employment range is reported. 

 In those cases, I simply use the mean of the range as the imputed employment for the period.  The 

impact of using imputed numbers is likely to be even less than their proportion indicates, as the typically 

small nondisclosure counties are less likely to contain sample plants.23 

 I also take advantage of the geographic dimension of the CBP survey to examine how changing 

the level of geographic aggregation of the construction activity data affects the instruments’ relevance.  I 

aggregate the instrument data at three geographic levels.  The finest aggregation is at the county level, as 

the data are originally reported.  In this case, construction employment in a given county (the component 

independent of overall county employment movements) instruments for inputs at ready-mixed 

establishments in that county.  County activity is an extremely local measure, however, even for plants in 

locally focused industries.  While many such plants do likely operate largely within one county, it is also 

highly probable that a significant fraction sell their output outside the boundaries of their county.  This is 

especially true for larger establishments in multi-county metropolitan areas, and in the Northeast, where 

counties are smaller in area than their western counterparts.  Multicounty activity measures may be more 

appropriate in such instances.  I therefore also instrument using construction activity data aggregated at 

two broader levels.  The first, and the smaller of the two geographically speaking, is at the CEA level.  

The third and highest geographic instrument aggregate I use is at the Economic Area (EA) level.  The 

BEA combines CEAs that are considered themselves to be economically interconnected into 172 EAs. 

 Construction sector and all-industry employment for these larger geographic divisions are simply the 

sums of the respective county-level values for all counties within the CEA or EA.  I do lose some 

across-plant variation in the instrument set when I aggregate geographically, of course.  The loss in 

identifying power may be a necessary tradeoff in order to gain relevance in those industries with plants 

that largely operate beyond their counties’ borders. 

                                                 
23 CBP data also have annual industry payroll numbers that could also serve as activity measures.  I found 

no systematic difference between results obtained using real payroll (not reported here) and those using 
employment. 
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Plant Level Production Data 

 I take ready-mixed concrete plant output and inputs data from the 1982, 1987, and 1992 

versions of the Census of Manufactures (CM).  The CM (part of the Bureau’s Longitudinal Research 

Database) contain a wealth of information on plant production activity.  Importantly here, it also contains 

the state and county where the establishment is physically located, so it is possible to match each plant 

with local instrument values at all three geographic aggregation levels.  My sample period was limited 

because of availability limitations of the annual CBP instrument data, which is only available for 1977 

onward (I require three lags of instrument values for each input observation).  Some small plants 

(typically with fewer than five employees)—called Administrative Record (AR) plants—have imputed 

data for most production variables.  I exclude these plants from my productivity sample, but do count 

them when computing the number of producers in a market. 

 The estimated production function is expressed in terms of gross physical output.  My 

benchmark specification does not use deflated revenue as the output measure, as is commonly done in 

studies using plant-level data.  This is because of the concern that this practice can result in production 

function estimation biases if there is plant-specific price variation in the industry caused by differences in 

demand conditions across plants, as demonstrated by Klette and Griliches (1996).  This issue will be 

discussed further below.  Instead, I take advantage of the fact that the CM collects plant-level output 

data (broken down by seven-digit SIC products) in physical units for many industries, including ready-

mixed concrete.  I will also check the robustness of my findings to the use of the traditional output 

measure of inventory-adjusted sales deflated by an industry-specific deflator. 

 Producer labor inputs are the sum of production worker hours (a reported value in the CM) and 

an imputed value for nonproduction worker hours.  Nonproduction worker hours are constructed using 

the method of Davis and Haltiwanger (1991), where the number of nonproduction workers at the plant 

is multiplied by the average annual hours worked by nonproduction employees within the corresponding 

two-digit industry and year.  The average hours values are based on Current Population Survey data. 

 Plant equipment and structures capital stocks are the establishment’s reported book value 

capital stocks deflated by the ratio of book to real values for the corresponding three-digit industry in 

that year.  Industry-level capital stocks are published BEA data.  The value of any reported machinery 

or building rentals is inflated to a stock by dividing by the BLS rental cost of capital series for the 

respective capital type.  The total capital stock used in production function estimation is constructed by 

summing the equipment and structures stocks. 
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 Real materials usage is plant materials costs divided by a corresponding four-digit materials 

deflator.  Energy input is the sum of electricity and fuel expenditures deflated using a four-digit energy 

cost index.  Each of the industry-specific price deflators used in this process is taken from the 

Bartelsman, Becker, and Gray/NBER Productivity Database. 

 Input cost shares used to construct a composite input are computed as follows.  Establishment 

labor costs are the sum of total salaries, wages, and benefits paid to permanent workers plus any costs 

from hiring contract labor.  Capital costs are the product of establishment capital stocks and the BLS 

capital rental cost series.  Energy costs include electricity and fuel purchases, and materials costs are a 

separately reported item in the CM.  I sum all these to obtain total costs, and calculate shares using this 

value.  Each input is weighted in the composite input by the average cost share in the ready-mixed 

industry over the current and previous CM years. 24 

 

IV. Empirical Results 
Production Function and Productivity Estimation 

The prerequisite for my empirical work is estimation of an industry production function.  As 

mentioned above, the commonly used Olley-Pakes procedure may not be appropriate for the ready-

mixed industry because the geographic market segmentation present in the industry makes it likely that 

concrete producers take their local demand state into account when making their investment decisions.  

This makes it impossible to back out accurate productivity proxies because there is no one-to-one 

mapping between plant productivity and investment.  In Table 1, I present evidence to this effect.  The 

table shows relevance statistics obtained from regressing the investment levels of ready-mixed plants (I 

do not include observations with zero reported investment, as those cannot be used with the Olley-

Pakes method) on the instrument sets I use in estimating the production function.  Each investment 

observation is projected on the current value, three lags, and one lead of local construction sector 

employment (already cleansed of overall regional effects).25  I also include year dummies to remove 

industry-wide and aggregate effects and a dummy indicating whether the plant belongs to a multiplant 

firm.  I report the analysis using instruments aggregated at three different geographic levels (regressions 

                                                 
24 Results obtained using plant-level cost shares rather than industry averages did not qualitatively change 

the benchmark findings described below, other than to lower the estimated returns to scale.  I do not present them 
here because of space considerations. 

25 This lag/lead pattern was chosen based on two considerations.  The first is my prior belief about the 
extent of management decision horizons, both forward- and backward-looking.  The second consideration is Buse’s 
(1992) demonstration that superfluous instruments in an instrument set lead to estimation biases.  The resulting 
lag/lead structure is a reconciliation of these two factors. 
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using the county-level instruments contain slightly fewer observations because some plants had missing 

county data).  The table shows F-statistics for the joint significance of the five construction activity 

terms, the R2 of the regression, and the construction terms’ partial R2 (the additional explanatory power 

gained by adding the downstream demand indicators to the year and multiplant dummies in the 

regression), estimated both with and without plant effects.  The demand terms are highly statistically 

significant (p-values less than 0.001) and, I believe, relevant economically.  Producers clearly take their 

local demand state into account when making investment choices.  The influence is especially strong 

when I account for plant effects by running the relevance tests using deviations from plant means.  

Because the demand instruments should be orthogonal to plant productivity levels, the regressions imply 

that there is a substantial influence of downstream demand on investment that is independent of plant 

productivity.  This breaks any one-to-one correspondence between productivity and investment that the 

O-P algorithm could exploit to obtain a productivity proxy.  Instrumental variables estimates are 

preferred for the present application. 

To obtain plant productivity values, I estimate the following production function: 

ititxtmultdtioit xdq ωγγδβγ +++++= ,  

where 

and sjt is the cost share of input j during period t.  All continuous variables are measured in natural 

logarithms.  I include the plant effect β i because the model presented above implies plants in markets 

with higher demand density are more productive on average.  Estimating the production function while 

accounting for plant effects completely removes any systematic cross-sectional differences in 

productivity levels that are correlated with local demand conditions (if they have not already been 

purged when constructing the instruments).26  The production function specification also includes year 

dummies to estimate δ t and a multiplant dummy dmult,t that captures the influence of operating as part of 

a multiple-establishment firm.  Instead of entering the four inputs (labor, capital stock, materials, and 

energy) separately into the function, I use an industry-cost-share-weighted composite input x it.  Under 

the assumption of cost minimization, the estimate of γx is the degree of returns to scale. 

While I include plant effects to improve the quality of the production function estimates, I do 

want to include their levels in my plant-specific productivity level estimates.  After all, I am interested in 

average plant productivity levels across markets.  Using only an estimate of the production function 

                                                 
26 Excluding plant fixed effects from the estimation does not substantially change the qualitative nature of 

the findings presented below.  A set of such estimates are available from the author. 

x s l s k s m s eit lt it kt it mt it et it= + + +
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residual ωit as a productivity measure leaves out any such level effects.  Hence, I measure the 

productivity levels of the plants in my sample instead as the estimate of β i + ωit.  This value is obtained 

by first estimating the production function estimates using variables deviated from their plant means, then 

subtracting the product of the estimated value of γx and the plant’s logged composite input, as well as 

the year and multiplant dummy coefficients (when applicable), from its logged output. 

As mentioned previously, my benchmark specification uses output measured in physical units 

instead of the commonly employed plant revenue deflated by an industry-wide price index, due to 

concerns that the latter may introduce estimation biases.  Revenue differences caused by plant-specific 

price deviations from the industry average enter into the error term of a production function; i.e., they 

are included in the plant’s estimated productivity level.  If this price variation reflects interplant 

differences in competitive environments rather than quality variation, then idiosyncratically high revenue 

will be attributed to output (and hence productivity) rather than price.  In this way, interplant price 

variation can induce spurious productivity dispersion.  Possible implications stemming from output 

mismeasurement of this form, while recognized by many, have largely been ignored in other studies 

because of difficulties in properly accounting for their influence.  There are some exceptions, however.  

Particularly relevant to this paper is the research of Klette and Griliches (1996), which demonstrates 

how price-induced measurement error can bias production function estimates.  If plant-level prices are 

correlated with my instruments, the instruments are no longer orthogonal to the production function 

residual (now containing the measurement error).  This is a distinct possibility here; it is quite plausible 

that plant-level prices are positively correlated with plant-specific demand.  This could lead to biases in 

my production function and productivity estimates.  Using physical output data instead of deflated 

revenue removes the problem of disentangling output and price.27 

I use a composite input rather than the four individual components because of practical 

estimation considerations.  While the market-segmentation instruments can be theoretically applied 

toward estimating any functional specification, there is an issue hampering such efforts.  As Shea (1997) 

demonstrates, instruments should not only be relevant to each of the individual endogenous explanatory 

variables, they should have linearly independent relevance.  This implies here that downstream activity 

                                                 
27 Some SIC 3273 plants produce seven-digit products other than ready-mixed concrete.  This fact could lead 

to its own output measurement problems if plants differ in the percentage of their total output accounted for by 
ready-mixed.  Two factors minimize any such problems.  First, ready-mixed plants tend to be quite specialized; the 
average primary product specialization ratio (i.e., the percentage of shipments that are ready-mixed concrete) for 
industry plants is near 95%.  Second, I divide plants’ ready-mixed production by their primary product specialization 
ratio to adjust all plants to a common output scale. 
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measures should influence plant hires of each input (labor, capital, energy, and materials) independently 

of the other inputs.  While some independence may be gained through the ability of the lag/lead structure 

of the instrument set to capture differing dynamic impacts across input demand functions, the high 

degree of comovement in the response of the inputs to downstream demand may overpower any such 

effect.  Indeed, attempts to estimate a Cobb-Douglas specification using IV methods yielded 

unacceptably high standard errors.28  The necessity of linearly independent relevance is obviously not an 

issue when using a composite input.  The composite input specification offers the further advantage of 

not imposing a specific functional form on the production function. 

Table 2 shows production function estimates obtained using the local construction activity 

instruments in a two-stage least squares procedure.  I present estimates for instrument sets at each of 

the three geographic aggregation levels.  Through the remainder of the paper, I will use productivity 

estimates derived from the CEA instruments to be consistent with my market area definition.  It is 

unlikely this choice will change the nature of my findings much; as can be seen, the production function 

estimates are consistent across instrument sets. 

The first stage relevance statistics in Table 2 indicate that even after controlling for overall local 

economic activity and plant and aggregate effects, local construction activity is germane to concrete 

plant inputs.  The F-statistic for joint significance of the five construction activity terms is highly 

significant.  The first stage results not only make the case for statistical relevance, but economic 

relevance as well.  The instrument set explains roughly ten percent of plants’ input variation over time.  

The construction activity instruments’ partial R2 is between five and seven percent.  These values 

compare favorably to results in other studies that use largely cross-sectional establishment panels.  The 

overall direction of the instruments’ influence on inputs was positive, as is expected.  The remainder of 

the table shows the production function estimates.  The composite input coefficient is quite precisely 

estimated, and it indicates constant returns to scale in the industry. 

 

Local Productivity Distributions, Plant Size, and Demand Density 

The central question of this paper is whether substitutability factors in markets (as embodied in 

local demand density) affect plant-level productivity distributions.  The two distribution moments that I 

                                                 
28 If I could obtain additional instruments that influence specific inputs, I could add these to the instrument 

set and possibly gain linearly independent influence across inputs.  This would allow separate technology parameter 
estimation by input.  Time and data constraints leave me to only use downstream measures in the instrument set for 
now.  I leave expansion of the set to future work. 
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am most concerned with are dispersion and central tendency.  I use measures of these moments 

selected to account for specific measurement concerns.  Dispersion is measured by the interquartile 

range of the local productivity distribution.  An ordinal dispersion measure is employed to minimize 

spurious influence from outliers.  This is not an uncommon practice; see Roberts and Supina (1997), for 

example.  Outliers are a special concern in this study for two reasons.  With establishment data, it is 

fairly easy for measurement and reporting error to creep into the data and create nonsensical 

observations.  Additionally, the fact that some of the markets have a small number of plants increases 

the vulnerability of traditionally calculated moments to outlier effects.  I choose the interquartile range 

rather than another quantile span because wide spans, despite being ordinal measures, are also more 

subject to outliers in small markets.  I measure the central tendency of the productivity distribution in 

two ways.  The first is the median productivity level in the market.  Again, I choose an ordinal measure 

to minimize measurement problems.  The second, the market’s output-share-weighted average 

productivity, takes the output distribution explicitly into account.  This measure is more vulnerable to the 

influence of outliers, of course, but captures whether output is reallocated to more productive producers 

as demand density increases. 

Furthermore, I also explore how demand density impacts the ratio of producers per unit of 

demand and average plant size.  To do so, I construct measures these two variables at the market level. 

 The producer-demand ratio is simply the number of plants in a market area divided by construction 

sector employment.  Downstream sector employment is used here again as a proxy for the size of local 

demand.  Average plant size is the mean of plants’ constant-dollar sales in the market.  I use deflated 

sales as an output measure here because sales are directly reported by even Administrative Record 

plants, allowing me to accurately account for their impact. 

The use of Component Economic Areas as local market units offers a potential number of 1042 

observations (348 CEAs x 3 years).  In the benchmark results, I use only those market-year 

observations with at least five non-AR plants in order to improve moment measurement accuracy.  I will 

test the results for robustness to this cutoff. 

 The empirical specification used to test for the impact of demand density on the local 

productivity distribution and number of producers is as follows: 

itcitcitdit BXdensy εββ +++= ,0  

This specification assumes that the dependent variable in market i, year t is a function of a constant, the 

local demand density densit, a vector Xc,it of other influences on the moments, and an CEA-year-

specific error term.  My dependent variables include plant-level productivity distribution moments 
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(measures of dispersion and central tendency) as well as the producer-demand ratio and the average 

plant size measure.  I estimate four versions of this general model.  A simple univariate regression of the 

dependent variable on logged demand density (the number of construction employees in the CEA 

divided by its land area) characterizes the nature of the correlation between these variables.  I then add 

a vector Xc,it of other local demand influences.  Finally, both of these models are rerun with year 

dummies to remove any industry-wide influences on the local productivity and output distributions. 

 The vector of local demand controls Xc,it contains an assortment of variables that plausibly 

impact the state of the regional ready-mixed concrete market, and as such may impact the local 

establishment-level productivity and size distributions through channels other than the spatial 

substitutability influence of demand density.29  I include a set of variables characterizing the 

demographics of the CEA: the percentage of the population that is nonwhite, the fraction over 25 years 

old, the proportion with at least a bachelor’s degree, and the number of marriages per 1000 population. 

 Each of these variables is aggregated from values in the 1988 version of the City and County Data 

Book.  The race and the marriage variables are 1984 data, while the others are from the 1980 

population census.  I also include variables that are likely correlated with the concrete demand 

specifically, including the fraction of households with at least two automobiles, the fraction of housing 

units that are owner-occupied, the median value of owner-occupied housing, and median personal 

income (also from 1980 and 1984).  I also add the growth rate of local construction employment over 

the previous five years to control for short-term effects (for example, a temporary boom might allow 

relatively inefficient producers to operate for a short while).  The average primary product specialization 

ratio (PPSR) of the ready-mixed plants in the region and year is also included.  I found in Syverson 

(2000) that physical product differentiation strongly affects industry productivity distributions.  

Controlling for PPSR differences across market areas should remove much of any product 

differentiation impact. 

 Ciccone and Hall (1996) explored the effect of market density on productivity levels.  While in 

much the same spirit as this study, their research employs a much more top-down approach.  They 

work with highly aggregated production data.  As such, they investigate productivity effects averaged 

across many industries rather than in specific sectors, and they are unable to examine differences in 

productivity dispersion.  Further, they use an overall employment density measure meant to capture 
                                                 

29 Most of these control variables change over time in actuality; however, some are time-invariant measures 
here due to data limitations.  For these controls, I have attempted to use values gathered as close to the middle of the 
sample period as possible.   
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agglomeration effects of unspecified origin(s).  This contrasts with my industry-specific downstream 

demand density measure which is meant to embody a specific mechanism through which market density 

acts.  Indeed, it is possible that the mechanisms modeled and tested here are at least in part driving 

Ciccone and Hall’s results.  To further distinguish any findings here from their results, though, I include in 

Xc,it a measure of local employment density using 1986 civilian employment numbers that is constructed 

just like their density measure.  Hence the impact of local demand density found below is independent of 

overall density effects. 

 The summary statistics in Table 3 indicate there are nontrivial differences in productivity 

moments and average plant sizes across local markets.  For example, a market having a median 

productivity one standard deviation larger than another’s has plants with a 22% greater median 

productive ability (characterized in physical output terms) on average.  As for productivity dispersion, its 

standard deviation is over three-fourths of the average dispersion, indicating substantial variation.  The 

standard deviation of average plant size (in output terms) is 62%. 

The benchmark results are presented in Table 4.  The table shows, for each specification and 

dependent variable, the estimated demand density coefficients and heteroskedasticity-robust standard 

errors.  I do not report covariate estimates in the interest of parsimony; panel B gives an idea of the 

nature of the covariate coefficients for a dispersion, central tendency, and plant size dependent 

variables. 

The results support the predictions of my model.  Productivity dispersion declines with density, 

and median productivity and the quantity-weighted productivity levels increase.  The number of 

producers per demand unit falls, while average plant size climbs.  These results hold for every 

dependent variable and for each of the four model versions.  All but one of the coefficients are 

statistically significant at the 5% level.  The exception has the expected sign, but is not significantly 

estimated.  The estimates imply that, controlling for other influences on demand, a one-standard-

deviation increase in logged demand density will decrease expected dispersion by approximately 0.077 

points—roughly one-fourth of the mean dispersion and one-third of its standard deviation (see Table 3). 

 The same density increase corresponds to a 2.1% increase in median productivity and a one-tenth 

standard deviation hike in quantity-weighted productivity levels, although the latter effect is not 

significantly estimated.  An equivalent density increase accompanies a decrease in the plant-to-demand 

ratio of nearly one-half of its standard deviation, and a 20% rise in average plant output. 
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Adding market demand controls to the regression does change the magnitudes of the 

coefficients.  The estimated magnitude of the downward effect on dispersion becomes even greater 

once local demand conditions are accounted for.  On the other hand, density’s estimated impact on the 

other dependent variables often diminishes.  Still, even after accounting for these influences, the implied 

direction of density’s impact remains. 

The drops in size and/or significance in the demand density coefficients seen in the median and 

quantity-weighted productivity regressions once demand controls are added can be readily explained.  

As discussed above, Ciccone and Hall (CH) found that overall market density positively influences 

average productivity levels.  When I remove the CH overall density measure from the controls, demand 

density’s estimated effect on productivity levels grows in magnitude and significance.  This can be seen 

in the final column in Table 4.  It is apparent that the impacts of demand density and overall density on 

average productivity levels are observationally closely related.30  This may be because demand 

density’s impact (at least the component independent of overall thick-market effects) influences local 

productivity dispersion more than levels.  On the other hand, it may be simply that the demand density 

mechanism posited here is in part driving the Ciccone-Hall results, and that an overall market density 

measure (which has a 0.65 correlation coefficient with my demand density measure) captures the causal 

influence of demand density.  Regardless of the specific mechanism, there is clear evidence that the 

average productivity levels of concrete producers in denser markets are higher than for their low-density 

counterparts. 

Interestingly, it seems that transport-cost-driven substitutability explains only a modest portion 

of the differences in local productivity distribution moments across markets.  The R2 for the univariate 

regressions in the benchmark specification indicate that demand density differences alone account for 

roughly 4% of the across-market variation in productivity dispersion.  The ability of density to explain 

median productivity levels is stronger, but still moderate.  These modest values are somewhat surprising, 

given the perceived level of homogeneity in ready-mixed output.  

 

Robustness Checks 

 In this section I will test the robustness of the main results to many of the empirical modeling 

assumptions made above. 

                                                 
30 Given that the CH density measure is included in the vector of control variables in the models yielding the 

second and fourth columns of the table, the significantly measured influence of demand density seen in those models 
is independent of any overall density effects. 
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Small Sample Bias.  Because a number of my observations have their productivity distribution moments 

calculated using only a few plants, it is possible that small sample biases in these moment calculations 

may be affecting my results.  I perform a Monte Carlo experiment to check for this possibility. 

 To do so, I populate my region-year cells with plant productivity and output observations 

chosen at random (with replacement) from my entire sample.  Each cell is populated with the same 

number of plants as in the actual sample, except here producers are randomly assigned.  Productivity 

moments are calculated by region-year observation as before, and these moments are used in the same 

demand density regressions run in the benchmark specification.  If demand density alone is responsible 

for variation in productivity distributions across regions, then the moments from randomly selected plants 

should be unaffected by demand density.  On the other hand, if small sample bias is (at least in part) 

driving the results, this should show up as nonzero density coefficients in regressions using moments 

from randomly populated cells. 

 Table 5 reports summary statistics of the distribution of demand density coefficients obtained 

from 10,000 such trials.  As is apparent, the means of the coefficients from the randomly populated 

regressions, while often estimated to be statistically distinguishable from zero, are quite small.  Further, 

nearly all of the actual demand density coefficients from the benchmark specification (displayed in the far 

right column) are outside extreme values of the coefficient distribution.  The only exceptions to this are 

the productivity level coefficients in models including demand and year controls (which are, 

unsurprisingly, some of the weakest results in the benchmark case).  It is clear that small sample bias is 

quite small in magnitude and not responsible for my findings. 

 

Minimum Number of Establishments.  Table 6 shows estimates obtained using any CEA-year 

observation with more than one non-Administrative Record plant, rather than only using those with at 

least five non-AR plants in the sample.  The general patterns seen in the benchmark results hold.  The 

estimates from the univariate and year dummies models are similar to those from the five-producer 

cutoff sample.  There are a few noticeable differences: demand density’s estimated impact on 

productivity dispersion in models with demand controls falls from the benchmark, and its influence on 

the median productivity levels increases.  Other coefficients change little from the benchmark case.  The 

decline in the dispersion coefficients from their benchmark can perhaps be explained by the fact that 
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meaningful dispersion measurement is more difficult in markets with very few plants.31 

 While some changes in estimates occur with different minimum plant number criteria, the 

contents of Table 6 support the implications of the theory.  In all cases, the estimated demand density 

effects have the expected sign, and all but one are statistically significant. 

 

Capital Measurement.  I exclude any Administrative Record plants from my sample because most of 

their production data (except total sales and number of employees) is imputed.  The plants in my sample 

have directly reported data, with one exception: capital stocks are imputed for those plants not in the 

current Annual Survey of Manufactures (ASM) panel (panels span five year periods starting in years 

ending in a “4” or “9”).  ASM plants comprise roughly one-third of my sample.  A plant’s probability of 

being selected for inclusion in the ASM panel increases with size, so my sample may have a substantial 

number of smaller concrete plants with imputed capital stock data.  Given that the tendency seen above 

for lower density markets to have smaller plants on average, spurious productivity mismeasurement (and 

hence dispersion) may be systematically greater in smaller markets.  The influence of possible capital 

measurement error on productivity estimates is mitigated by the fact that capital cost shares are rather 

small in the industry (around 6.5 percent), but to ensure capital imputations are not responsible for my 

results, I perform two exercises. 

 In the first, I rerun the dispersion and median level specifications in Table 4 using plant-level 

labor productivity measures (using both physical output per employee and per hour) rather than total 

factor productivity estimates.  Capital measurement concerns are not an issue in this case (although 

interplant capital intensity variation is).  These results, which support the earlier findings, are shown in 

Table 7.  Density coefficients are of the expected sign, and significantly so, for every dependent variable 

and model. 

 Next, I select only ASM plants for my sample, and re-estimate the production function, TFP 

levels, and local demand density regressions using only these plants.  Doing so, of course, severely limits 

my sample size, because there are far fewer local markets with multiple ASM plants.  To counteract this 

loss of identification power, I use a cutoff level of two ASM plants to select local area-year 

observations.  Doing so leaves 394 observations.  Table 8 shows estimates obtained with this limited 

                                                 
31 I also estimate a specification, not shown here, using a cutoff of ten non-AR plants.  In this case, the 

dispersion coefficients in the specifications with demand controls again climb to the levels seen in the benchmark 
estimates, suggesting that dispersion measurement does suffer somewhat in markets with few plants.  The estimates 
for the productivity-level specifications with demand controls become insignificant, also suggesting that demand 
density’s influence on productivity levels (independent of overall density) may fade somewhat in larger markets. 
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sample.  The demand density coefficients are consistent with the findings from the full sample.  The 

estimates all have the expected sign.  They are less precisely estimated, of course, but most remain 

significant. 

These two sets of results offer evidence that capital measurement error is not driving the 

benchmark results.32 

 

Output Measure.  As discussed above, I use physical output measures to avoid possible productivity 

estimation problems arising from plant-level price variation.  However, if price differences embody 

quality differences, I want my productivity estimates to incorporate this term, since productivity should 

ideally measure delivered quality as well as quantity.33 

The ready-mixed concrete industry may appear to produce a very homogeneous product, 

leading one to believe that any plant-level price variation results from competitive rather than quality 

differences across producers.  However, there is some reason to believe that quality differences may 

exist within the industry.  By changing ingredient ratios and using admixtures, producers can achieve 

variation in the physical and aesthetic properties of ready-mixed concrete in order to meet specific 

buyer needs.  Discussions with industry managers indicate that shipments often vary considerably in such 

properties, and that unit costs reflect differences in material and production costs across concrete types. 

 If plants differ in the proportions with which they produce these various product styles, quality 

differences will be reflected in total revenue numbers. 

The connection between plant-level quality and price variation is difficult to quantify because 

ultra-detailed product information is not available.  It is an easier task, however, to measure the relative 

strength of demand influences on prices using the product-level data in the Census of Manufactures.  It 

is important that this connection be weak for accurate productivity estimation with deflated revenue 

output, because correlation between my demand instruments and output measurement error will bias 

estimates.  Since both sales and physical outputs are reported at the product level in the CM, I can 

compute plant-level unit prices.  By regressing these (logged) prices on my instruments, and comparing 

                                                 
32 Another possible form of capital mismeasurement arises from variable capital utilization.  Capital stock 

data do not indicate the intensity with which capital is utilized in production.  If utilization varies substantially across 
producers, capital stocks do not accurately measure the amount of capital services employed by the plant in 
production.  To assess the influence of variable capital utilization on my results, I re-estimated the empirical model 
using plant productivity levels obtained by a method suggested in Basu and Kimball (1997).  This procedure uses 
hours per worker as a proxy for capital intensity by assuming that production is Leontief in value added and 
materials.  The results of this exercise, which are available from the author, largely mirror the benchmark results. 

33 Abbott (1992) discusses this issue in considerable detail. 
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these results to the regressions of plant input on the instruments (the first stage of the IV estimation), I 

can gauge the relative impact of demand on prices and output. 

In the price regression, the five local demand variables have a partial R2 of 0.011.  The value of 

the F-statistic for joint significance of the demand terms is 20.38.  Comparing these statistics to the 

previously reported values from the regression of plant inputs on the instrument set (see Table 2) 

indicates that demand increases are absorbed more by production boosts than price hikes.  This is 

suggestive evidence that price dispersion in the concrete industry may be driven by factors other than 

demand.  Furthermore, it suggests the estimation biases from using deflated revenue are minimized here 

by the high degree of comovement between my instruments and output relative to their correlation with 

prices. 

 To check the benchmark results for robustness to my output measure, I re-estimate the 

production function and plant productivity levels using deflated revenue in place of physical output, and 

use these productivity values in the demand density regressions.  Here, yearly gross output is measured 

as a plant’s total value of shipments (adjusted for changes in inventories over the year) divided by an 

output deflator for the ready-mixed industry from the NBER Productivity Database.  I report the results 

in Table 10.  Panel A shows the results of the production function estimation.  The salient feature of the 

table is the higher estimate of returns to scale.  (Note that the other coefficients, as intercept terms, differ 

in magnitude from their benchmark counterparts because physical output and deflated revenue are 

measured in different units.  This is true of the demand density coefficients in the productivity distribution 

moment regressions as well.)  The increasing returns seen here would result if larger plants tend produce 

higher-quality concrete.  This quality difference would show up in a deflated revenue output measure but 

not in a physical output measure.  There is some mild evidence suggesting this; the correlation between 

the deviations of logged prices and input levels from their plant means is slightly positive (0.05).  

However, this could also be an artifact of procyclical markups within plants.  Adding to the ambiguity is 

the fact that estimating other specifications using deflated revenue, such as leaving plant effects out of the 

production function, drops the scale coefficient back down to levels seen in the benchmark case (these 

results are not shown here). 

Panel B shows the results from the productivity moment estimations.34  The results for 

productivity dispersion are similar in quality to those in Table 4.  Dispersion falls as density grows.  

                                                 
34 The results for the plant-to-demand ratio and average plant size dependent variables are virtually identical 

because these variables are measured the same way in both cases.  The only difference arises from a small change in 
sample size, so I do not report them here. 
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These estimates are statistically significant and consistent across all models, with the estimated impact 

being larger when other local demand controls are added.  The results from the productivity level 

regressions are weaker.  All coefficients are statistically insignificant, and two have an unexpected sign.  

The weakness of demand density in these cases may result from the high returns-to-scale estimate in the 

estimation of the production function: higher output levels of large plants (which tend to be in large 

markets) are attributed to internal scale efficiencies rather than idiosyncratic productivity.  Another 

possibility is that, as the model implies—and as I have confirmed empirically (these results are not 

presented due to space considerations)—average prices across markets decline with demand density.  

This negative relationship between physical productivity and average prices may explain why a revenue-

based productivity measure shows no level effect of density but a physical output measure does.  It also 

is consistent with the finding that density’s impact on revenue-based productivity dispersion remains, 

because productivity and price dispersion are positively related in the model.  The implications of these 

across-market price differences are intriguing and may warrant further research. 

Plant-level price variation introduces additional issues into the empirical tests using deflated 

revenue output.  Certainly, the negative impact of demand density on productivity dispersion remains 

regardless of output measure.  Whether the weaker results for density’s impact on productivity’s central 

tendency are driven by quality or competitive differences across plants and markets is unclear.35 

 

Technology Differences.  One of the advantages of using a single-industry case study to examine the 

link between substitutability and plant-level productivity distributions is elimination of any impact from 

between-industry technology differences.  However, even within a narrowly defined industry with largely 

similar production methods across plants, it is possible that some difference in production technologies 

exists.  For example, the primary technological innovation in the ready-mixed concrete industry over the 

sample period was the transition from manual to automatic batching (the mixing of concrete orders 

according to a “recipe”).  If this innovation spread unevenly over time or geography, plants may have 

been operating simultaneously under different technologies.  Further, if technology adoption differences 

result in part from demand market structures, local technological factors may be correlated with my 

explanatory variables.  This may introduce bias into the above results. 

                                                 
35 As a further check on the consistency of the productivity estimates, I obtained a set of results using a 

traditionally calculated productivity index values rather than estimated plant productivity measures.  Productivity in 
this case is computed as the log of physical production minus a weighted sum of logged inputs.  Weights for each of 
the four inputs (capital, labor, energy, and materials) are the industry-wide average of the plant-level cost shares of 
the respective inputs over the current and previous CM years.  These results mimicked the benchmark findings. 
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 To measure the influence of any such effects, I run a specification which adds three technology 

controls to the previously discussed demand controls.  These controls are specific to each region and 

year.  The first is the fraction of plants in the region operating as units of a multiplant firm.  It is possible 

that plants operating as part of a larger firm have additional advantage in securing investment financing 

and thus may be able to more easily obtain new production technology.  Hence regions dominated by 

multiplant firms may be more likely to operate on the technological edge of the industry, possibly 

affecting moments of the local producer productivity distribution.  The second control is the average 

capital-to-labor ratio of ready-mixed producers in the region.  This variable should capture most of any 

capital-embodied technology differences between regions.  The third technology variable is a measure 

of the average real wage in the region.  This is constructed from County Business Patterns data for 

establishments in all industries, not just concrete.  All-industry wages are used to capture whether an 

area is a high- or low-wage area without confounding the specific choices made by ready-mixed plants 

in their labor purchases that may not be correlated with technology. 

 Table 11 compares the results for the full model (year dummies and demand controls included) 

with and without the technology controls.  The comparison is to the benchmark specification, so I use 

productivity estimates obtained with physical output values.  It appears that across-plant technology 

differences are not greatly affecting the results.  Other than diminishing the size of demand density’s 

estimated impact on the local quantity-weighted average productivity level, there are no notable 

differences in the benchmark estimates once technology differences are accounted for.  In no case is the 

implied direction of influence changed. 

 

V. Conclusion 
I have posited that demand density differences across geographically segmented markets 

change plant-level productivity distributions in intuitively predictable ways.  The results above strongly 

support this assertion.  Evidence from ready-mixed concrete producer data shows that markets with 

higher demand density have local productivity distributions with less dispersion and higher average 

productivity levels.  Plants tend to be larger and serve more customers on average in higher-density 

markets.  These findings are consistent across changes in specific empirical modeling assumptions.  The 

driving mechanism is explained theoretically as the effect of demand density on producer density, and 

hence on within-market substitutability.  Greater competition within denser markets makes it more 

difficult for low-efficiency plants to profitably produce, truncating the lower end of the local plant-level 

productivity distribution. 
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The findings of this case study have several implications.  Most directly, they suggest a role 

played by geographically segmented markets in accounting for some of the persistent productivity 

dispersion observed in the data.  Further, transport costs induce a pattern of increasing returns to scale 

based on selective survivability across market areas: larger plants tend to be in larger markets, and 

larger markets tend to have higher average productivity levels.  Such processes would lead to 

economies becoming more efficient as they grow.  The results also suggest a specific mechanism driving 

agglomeration externalities measured in other studies.  Additionally, the results may suggest considerable 

potential for decreases in transport costs to change the efficiency level distribution.  These may be 

interesting avenues for future research. 

Less directly, but perhaps more broadly applicable, the paper’s findings bolster my results 

(presented in Syverson (2000)) using interindustry variation in measurable substitutability factors to 

explain differences in the productivity distributions of industry producers.  Other factors that limit output 

substitutability besides transport costs, such as product differentiation, can be pointed to as sources of 

persistent efficiency differences.  These other influences work through the same basic mechanism as 

transport costs to change producer productivity distributions. 

The empirical evidence also suggests that much work remains to be done to completely 

characterize the nature and sources of productivity dispersion.  Even in the “controlled” environment of 

an industry case study, observable factors still only account for a small fraction of the observed variance 

of productivity distribution moments.  There is still an enormous amount of productivity heterogeneity 

being caused by factors beyond plausible output-market influences.  Supply-side factors doubtlessly 

account for some of this.  Perhaps as well this is a strong statement about the role of unmeasured (and in 

many cases, unmeasurable) product differentiation—such as subtle variations in product attributes, 

subjective product differentiation, and bundled abstract goods—in explaining why we see such stark 

efficiency differences across plants. 
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Appendix 
 

A. Derivation of expression (9). 

Using (3) and (4), I can express a plant’s quantity sold as a function of its own and its neighbors’ prices: 

Stacking plant-specific equations yields an expression for this relationship in vector form: 

Substituting equation (8) for p* into this equation gives an expression for q* in terms of c: 

Inspection of the properties of the So and -2I matrices reveals that the second term inside the brackets 

is equal to a vector of zeros (intuitively, any pricing element common to all producers has no bearing on 

relative sales levels).  Using this fact and bringing t-1 outside the brackets gives a simplified expression 

for the plants’ quantities sold: 

 

B. Show that the bracketed term in (9) is equivalent to the right-hand-side of equation (10). 

I must prove that 0.5(So – 2I)S = S – I. 

First, distribute the scalar and S through the term in parentheses: 

0.5(So – 2I)S = 0.5SoS – S. 

Now given the definition S ≡ 0.5(I – 0.25So)-1, rewrite So as: 

So = 4I – 2S-1. 

Substituting with this expression yields  

0.5SoS – S = 0.5(4I – 2S-1)S – S 

 = 2S – S-1S – S 

 = S – I. 
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Figure 1: Post-Shakeout Productivity Distribution Moments
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Figure 2: Number of Plants at Entry, Post-Shakeout, and in Symmetric Cost Case
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Figure 3: Fraction of Entrants Producing after Shakeout and Average Productivity
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Figure 4: Average Post-Shakeout Markup and Profits
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Figure 5: Average Plant Output after Shakeout (D /N )
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Table 1: Relevance of Local Demand to Plant-Level Investment 
 
This table shows relevance statistics from a regression of plant-level investment on local demand 
measures.  For details see text. 
 

  No Plant Effects Plant Effects 
Instrument Set N R2  Partial R2 F R2 Partial R2 F 

County 8192 0.032 0.010 17.34 0.054 0.032 55.49 
CEA 8264 0.037 0.016 26.60 0.075 0.053 94.68 
EA 8264 0.038 0.017 39.41 0.075 0.053 93.90 

 
 
Table 2: Production Function Estimation Results 
 
This table shows instrumental variables production function estimates (first and second stage) for ready-
mixed concrete plants, using local demand measures as instruments.  For details see text. 
 

 1st Stage Stats 2nd Stage Coefficient Estimates Instrument 
Set N F R2 Part. R2 d82 d87 dmult x it R2 

County 11,017 128.7 0.094 0.053 -0.068 
(0.006) 

-0.096 
(0.007) 

0.008 
(0.005) 

1.064 
(0.027) 

0.182 

CEA 11,114 177.4 0.112 0.071 -0.073 
(0.006) 

-0.087 
(0.007) 

0.008 
(0.005) 

0.992 
(0.023) 

0.201 

EA 11,114 176.2 0.111 0.071 -0.073 
(0.006) 

-0.088 
(0.007) 

0.008 
(0.005) 

0.999 
(0.023) 

0.201 

 
 
 
Table 3: Descriptive Statistics—All Region-Year Observations (N=1034) 
 

Variable Mean Std. Dev. Skewness IQ Range 90-10%ile 
Prod. Dispersion (IQ Range) 0.317 0.245 2.693 0.231 0.494 

Median Productivity 4.794 0.217 -7.810 0.166 0.344 
Qty.-Weighted Avg. Prod. 4.913 0.498 2.156 0.245 0.673 
ln(Plants per Demand Unit) -6.391 0.736 -0.020 1.015 1.881 

ln(Average Plant Size) 7.374 0.622 0.024 0.844 1.567 
ln(Demand Density) 0.315 1.405 0.072 1.535 3.533 

Demand Density 4.115 11.88 5.386 2.293 7.652 
TFP (N=11114) 4.808 0.367 -1.646 0.289 0.659 

 
 
 



 
 

 



 
 

Table 4. Local Productivity Distribution Regressions—Main Results 
 
A.  Location-year observations with at least 5 non-Administrative Record producers, N=688.  
Heteroskedasticity-robust standard errors are in parentheses. An asterisk indicates significance at the 
5% level. 
 

Demand Controls: No Yes No Yes Yes 
(w/o CH) 

 
Dependent 
Variable Year Dummies: No No Yes Yes Yes 

R2 0.041 0.093 0.058 0.113 0.111 Productivity 
Dispersion Demand Density 

Coefficient 
-0.024* 
(0.005) 

-0.052* 
(0.015) 

-0.025* 
(0.005) 

-0.055* 
(0.015) 

-0.046* 
(0.011) 

       
R2 0.124 0.164 0.194 0.235 0.229 

Median 
Productivity 

Demand Density 
Coefficient 

0.030* 
(0.003) 

0.024* 
(0.006) 

0.029* 
(0.003) 

0.015* 
(0.006) 

0.026* 
(0.005) 

       
R2 0.013 0.051 0.057 0.077 0.077 

Q-Wt. Avg. 
Productivity 

Demand Density 
Coefficient 

0.030* 
(0.008) 

0.049* 
(0.025) 

0.028* 
(0.008) 

0.032 
(0.023) 

0.038* 
(0.014) 

       
R2 0.565 0.682 0.579 0.696 0.686 Plants per 

Demand Unit Demand Density 
Coefficient 

-0.368* 
(0.015) 

-0.258* 
(0.034) 

-0.363* 
(0.014) 

-0.244* 
(0.034) 

-0.318* 
(0.026) 

       
R2 0.348 0.570 0.410 0.628 0.622 

Average 
Output 

Demand Density 
Coefficient 

0.228* 
(0.013) 

0.158* 
(0.024) 

0.219* 
(0.013) 

0.140* 
(0.023) 

0.187* 
(0.016) 

 
 
B. Summary of Demand Control Coefficients (See text for details.) 
 
Dependent Variable Significant, Positive Coefficients Significant, Negative Coefficients 

Productivity 
Dispersion 

Median Housing Price, 1987 Dummy 
Marriages per Capita, Fraction with 
Bachelor’s, 2+ Auto Households 

   

Median 
Productivity 

Ciccone-Hall Density 
Percentage Nonwhite, Fraction over 
25, Fraction with Bachelor’s, 1982 
and 1987 Dummies 

   

Average Output 
Marriages per Capita, Fraction with 
Bachelor’s, Median Housing Price, 
Ciccone-Hall Density, Demand 

Fraction over 25, 2+ Auto 
Households, Primary Product 
Specialization Ratio, 1982 Dummy 



 
 

Growth, 1987 Dummy 
 



 
 

Table 5: Monte Carlo Results, Benchmark Model (10,000 trials) 
 
The table shows various values from a distribution of estimated coefficients using productivity moments 
from regions randomly populated with plant productivity-quantity pair draws, along with the actual 
estimated coefficient from Table 4.  For details see text. 
 
A. Dependent Variable: Productivity Dispersion 
 

Model Mean Std. Dev. 1%ile 99%ile 5%ile 95%ile Actual 
Univariate 0.00031 0.00178 -0.00382 0.00441 -0.00259 0.00325 -0.024 

Demand Controls -0.00109 0.00415 -0.01073 0.00878 -0.00788 0.00580 -0.053 
Year Effects 0.00032 0.00179 -0.00384 0.00443 -0.00260 0.00326 -0.025 

Demand and Year -0.00109 0.00420 -0.01083 0.00885 -0.00791 0.00592 -0.055 
 
 
B. Dependent Variable: Median Productivity 
 

Model Mean Std. Dev. 1%ile 99%ile 5%ile 95%ile Actual 
Univariate -0.00001 0.00300 -0.00694 0.00697 -0.00497 0.00498 0.030 

Demand Controls 0.00601 0.00717 -0.01065 0.02266 -0.00581 0.01776 0.024 
Year Effects -0.00008 0.00302 -0.00715 0.00692 -0.00508 0.00490 0.029 

Demand and Year 0.00569 0.00725 -0.01158 0.02243 -0.00637 0.01755 0.015 
 
 
C. Dependent Variable: Quantity-Weighted Average Productivity 
 

Model Mean Std. Dev. 1%ile 99%ile 5%ile 95%ile Actual 
Univariate 0.00021 0.00721 -0.01688 0.01726 -0.01163 0.01224 0.030 

Demand Controls -0.00073 0.01697 -0.04058 0.04010 -0.02846 0.02692 0.049 
Year Effects 0.00021 0.00726 -0.01714 0.01748 -0.01165 0.01222 0.028 

Demand and Year -0.00069 0.01718 -0.04132 0.04043 -0.02879 0.02711 0.032 
 



 
 

 
Table 6. Local Productivity Distribution Regressions—Alternative Minimum Required 
Observations  
 
Observations with at least 2 non-Administrative Record producers, N=990.  Heteroskedasticity-robust 
standard errors are in parentheses. An asterisk indicates significance at the 5% level.  

 
Dependent Demand Controls: No Yes No Yes 
Variable Year Dummies: No No Yes Yes 

R2 0.040 0.067 0.047 0.077 Productivity 
Dispersion Demand Density 

Coefficient 
-0.034* 
(0.006) 

-0.030* 
(0.013) 

-0.035* 
(0.006) 

-0.029* 
(0.013) 

      
R2 0.065 0.089 0.111 0.130 

Median 
Productivity 

Demand Density 
Coefficient 

0.029* 
(0.003) 

0.033* 
(0.007) 

0.028* 
(0.003) 

0.028* 
(0.007) 

      
R2 0.011 0.031 0.036 0.049 

Q-Wt. Avg. 
Productivity 

Demand Density 
Coefficient 

0.033* 
(0.008) 

0.048* 
(0.021) 

0.031* 
(0.008) 

0.033 
(0.021) 

      
R2 0.518 0.636 0.530 0.647 Plants per 

Demand Unit Demand Density 
Coefficient 

-0.366* 
(0.012) 

-0.266* 
(0.027) 

-0.363* 
(0.012) 

-0.254* 
(0.027) 

      
R2 0.307 0.506 0.351 0.554 

Average 
Output 

Demand Density 
Coefficient 

0.236* 
(0.012) 

0.172* 
(0.022) 

0.230* 
(0.011) 

0.161* 
(0.021) 

 
 



 
 

Table 7. Local Productivity Distribution Regressions—Labor Productivity Measures 
 
Location-year observations with at least 5 non-Administrative Record establishments, N=688.  
Heteroskedasticity-robust standard errors are in parentheses. An asterisk indicates significance at the 
5% level. 
 

Dependent Demand Controls: No Yes No Yes 
Variable Year Dummies: No No Yes Yes 

R2 0.011 0.035 0.012 0.037 Dispersion, 
Output per 
Employee 

Demand Density 
Coefficient 

-0.023* 
(0.008) 

-0.061* 
(0.023) 

-0.023* 
(0.008) 

-0.063* 
(0.014) 

      
R2 0.008 0.034 0.008 0.028 Dispersion, 

Output per 
Hour 

Demand Density 
Coefficient 

-0.020* 
(0.008) 

-0.048* 
(0.019) 

-0.020* 
(0.008) 

-0.049* 
(0.019) 

      
R2 0.283 0.350 0.411 0.479 Median, 

Output per 
Employee 

Demand Density 
Coefficient 

0.112* 
(0.007) 

0.112* 
(0.015) 

0.106* 
(0.007) 

0.089* 
(0.006) 

      
R2 0.242 0.315 0.339 0.416 Median, 

Output per 
Hour 

Demand Density 
Coefficient 

0.097* 
(0.007) 

0.088* 
(0.015) 

0.093* 
(0.007) 

0.069* 
(0.013) 

      
R2 0.130 0.391 0.254 0.496 Qty-Wt. Avg., 

Output per 
Employee 

Demand Density 
Coefficient 

0.121* 
(0.010) 

0.108* 
(0.026) 

0.114* 
(0.010) 

0.076* 
(0.023) 

      
R2 0.132 0.432 0.224 0.507 Qty-Wt. Avg., 

 Output per 
Hour 

Demand Density 
Coefficient 

0.111* 
(0.009) 

0.087* 
(0.021) 

0.107* 
(0.009) 

0.063* 
(0.020) 

 
 
 



 
 

Table 8. Local Productivity Distribution Regressions—ASM Plants Only 
 
Location-year observations with at least 2 ASM establishments, N=387.  Heteroskedasticity-robust 
standard errors are in parentheses. An asterisk indicates significance at the 5% level. 
 

Dependent Demand Controls: No Yes No Yes 
Variable Year Dummies: No No Yes Yes 

R2 0.002 0.040 0.024 0.057 Productivity 
Dispersion Demand Density 

Coefficient 
-0.011 
(0.013) 

-0.065* 
(0.020) 

-0.010 
(0.012) 

-0.064* 
(0.019) 

      
R2 0.179 0.315 0.209 0.353 

Median 
Productivity 

Demand Density 
Coefficient 

0.104* 
(0.012) 

0.113* 
(0.022) 

0.105* 
(0.011) 

0.102* 
(0.023) 

      
R2 0.039 0.098 0.058 0.112 

Q-Wt. Avg. 
Productivity 

Demand Density 
Coefficient 

0.112* 
(0.025) 

0.180* 
(0.068) 

0.116* 
(0.024) 

0.154* 
(0.067) 

      
R2 0.499 0.653 0.502 0.663 

Plants per 
Demand Unit 

Demand Density 
Coefficient 

-0.321* 
(0.020) 

-0.195* 
(0.034) 

-0.322* 
(0.020) 

-0.182* 
(0.034) 

      
R2 0.269 0.546 0.296 0.591 

Average 
Output 

Demand Density 
Coefficient 

0.191* 
(0.018) 

0.099* 
(0.024) 

0.190* 
(0.018) 

0.089* 
(0.023) 

 
 



 
 

Table 9. Local Productivity Distribution Regressions—No Plant Effects 
 
A. Production Function Estimation Results 
 

 1st Stage Stats 2nd Stage Coefficient Estimates 
N F R2 Part. R2 d82 d87 dmult x it R2 

11,114 61.04 0.043 0.026 -0.157 
(0.009) 

-0.144 
(0.010) 

0.095 
(0.007) 

0.995 
(0.020) 

0.263 

 
 
B. Local Productivity Distribution Regressions 
 
Location-year observations with at least 5 non-Administrative Record producers, N=688.  
Heteroskedasticity-robust standard errors are in parentheses. An asterisk indicates significance at the 
5% level. 
 

Demand Controls: No Yes No Yes Yes 
(w/o CH) 

 
Dependent 
Variable Year Dummies: No No Yes Yes Yes 

R2 0.042 0.093 0.058 0.110 0.110 Productivity 
Dispersion Demand Density 

Coefficient 
-0.024* 
(0.005) 

-0.052* 
(0.015) 

-0.026* 
(0.005) 

-0.053* 
(0.015) 

-0.049* 
(0.011) 

       
R2 0.094 0.145 0.098 0.147 0.136 

Median 
Productivity 

Demand Density 
Coefficient 

0.025* 
(0.003) 

0.008 
(0.006) 

0.025* 
(0.003) 

0.009 
(0.006) 

0.022* 
(0.005) 

       
R2 0.044 0.070 0.049 0.071 0.063 

Q-Wt. Avg. 
Productivity 

Demand Density 
Coefficient 

0.041* 
(0.007) 

0.021 
(0.015) 

0.042* 
(0.006) 

0.020 
(0.016) 

0.046* 
(0.011) 

 



 
 

Table 10. Local Productivity Distribution Regressions—Deflated Revenue Output Measure  
 
A. Production Function Estimation Results 
 

 1st Stage Stats 2nd Stage Coefficient Estimates 
N F R2 Part. R2 d82 d87 dmult x it R2 

11,652 185.8 0.112 0.071 -0.037 
(0.005) 

-0.024 
(0.005) 

0.011 
(0.004) 

1.093 
(0.018) 

0.340 

 
 
B. Local Productivity Distribution Regressions 
 
Location-year observations with at least 5 establishments, N=703.  Heteroskedasticity-robust standard 
errors are in parentheses. An asterisk indicates significance at the 5% level. 
 

Dependent Demand Controls: No Yes No Yes 
Variable Year Dummies: No No Yes Yes 

R2 0.014 0.049 0.038 0.062 Productivity 
Dispersion Demand Density 

Coefficient 
-0.011* 
(0.003) 

-0.020* 
(0.007) 

-0.011* 
(0.003) 

-0.024* 
(0.007) 

      
R2 0.005 0.084 0.063 0.172 

Median 
Productivity 

Demand Density 
Coefficient 

0.005 
(0.003) 

0.003 
(0.005) 

0.004 
(0.003) 

-0.005 
(0.005) 

      
R2 0.001 0.071 0.036 0.112 

Q-Wt. Avg. 
Productivity 

Demand Density 
Coefficient 

0.002 
(0.004) 

0.003 
(0.008) 

0.002 
(0.004) 

-0.003 
(0.008) 

 
 



 
 

Table 11. Local Productivity Distribution Regressions—Technology Controls (Physical 
Output Measure) 

 
Location-year observations with at least 5 establishments, N=688.  Heteroskedasticity-robust 
standard errors are in parentheses. An asterisk indicates significance at the 5% level. 
 

Dependent 
Variable 

Controls: Demand 
Only 

Demand 
and Tech 

R2 0.113 0.120 Productivity 
Dispersion Demand Density 

Coefficient 
-0.055* 
(0.015) 

-0.049* 
(0.015) 

    
R2 0.235 0.243 

Median 
Productivity 

Demand Density 
Coefficient 

0.015* 
(0.006) 

0.014* 
(0.007) 

    
R2 0.077 0.100 

Q-Wt. Avg. 
Productivity 

Demand Density 
Coefficient 

0.032 
(0.023) 

0.009 
(0.021) 

    
R2 0.696 0.719 

Plants per 
Demand Unit 

Demand Density 
Coefficient 

-0.244* 
(0.034) 

-0.263* 
(0.030) 

    
R2 0.628 0.642 

Average 
Output 

Demand Density 
Coefficient 

0.140* 
(0.023) 

0.137* 
(0.023) 

 
 


